electrostatics

or, electric forces when nothing is moving.
Summarizing the properties of charge:
1. Charge is quantized in units of $|e| = 1.6 \times 10^{-19}$ C
2. Electrons carry one unit of negative charge, $-e$
3. Protons carry one unit positive charge, $+e$
4. Objects become charged be gaining or losing electrons, not protons
5. Electric charge is always conserved

| Particle | Charge [C] | $|e|$ | Mass [kg] |
|----------------|----------------|------|-------------|
| electron (e^-) | -1.60×10^{-19} | -1 | 9.11×10^{-31} |
| proton (p^+) | $+1.60 \times 10^{-19}$ | $+1$ | 1.67×10^{-27} |
| neutron (n^0) | 0 | 0 | 1.67×10^{-27} |
a) before

charged rubber rod

b) contact

c) after

metal sphere
“Little pieces of tissue paper (or light grains of sawdust) are attracted by a glass rod rubbed with a silk handkerchief (or by a piece of sealing wax or a rubber comb rubbed with flannel).”

- from a random 1902 science book
neutral metal sphere

charged rubber rod
\(\vec{F} \)

\(\vec{F} \)

\(\vec{r}_{12} \)

\(\vec{r}_{12} \)

\(q_1 \)

\(q_2 \)

\(q_1 \)

\(q_2 \)
| Source | $|\vec{E}|$ | Source | $|\vec{E}|$ |
|--|------|--|--------|
| Fluorescent lighting tube | 10 | Atmosphere (fair weather) | 10^2 |
| Balloon rubbed on hair | 10^3 | Atmosphere (under thundercloud) | 10^4 |
| Photocopier | 10^5 | Spark in air | 10^6 |
| Across a transistor gate dielectric | 10^9 | Near electron in hydrogen atom | 10^{11} |
2. Three point charges lie along the x axis, as shown at left. A positive charge $q_1 = 15 \mu C$ is at $x = 2 \text{ m}$, and a positive charge of $q_2 = 6 \mu C$ is at the origin. Where must a negative charge q_3 be placed on the x-axis between the two positive charges such that the resulting electric force on it is zero?
2. Three point charges lie along the x axis, as shown at left. A positive charge $q_1 = 15\ \mu\text{C}$ is at $x = 2\ \text{m}$, and a positive charge of $q_2 = 6\ \mu\text{C}$ is at the origin. Where must a negative charge q_3 be placed on the x-axis between the two positive charges such that the resulting electric force on it is zero?

\[\sim 0.77\text{m from } q_2 \]

or

\[\sim 1.23\text{m from } q_1 \]
equal charges

field: \(A > B > C \)
opposite charges
“dipole”
e.g., LiF & HF
unequal
like
unequal
unlike
9. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?

- a
- b
- c
- d
6. A circuital ring of charge of radius has a total charge of uniformly distributed around it. The magnitude of the electric field at the center of the ring is:

- $\nabla E = k\frac{q}{b^2}$
- $\nabla E = k\frac{keq^2}{b^2}$
- $\nabla E = k\frac{keq^2}{R^2}$
- $\nabla E = k\frac{keq^2}{r^2}$

7. Two insulated dielectric spheres have a charge of q and $-3q$, respectively. They are connected by a conducting wire, and after equilibrium is reached, the wire is removed such that both spheres are again isolated. What is the charge on each sphere?

- q, $-3q$
- $-q$, $-3q$
- 0, $-2q$
- $2q$, $-2q$

8. An angle point charge $+q$ is placed exactly at the center of a hollow conducting sphere of radius R. Before placing the point charge, the conducting sphere had zero net charge. What is the magnitude of the electric field outside the conducting sphere at a distance r from the center of the conducting sphere?

- $|\vec{E}| = \frac{kq}{r^2}$
- $|\vec{E}| = k\frac{keq}{(R+r)^2}$
- $|\vec{E}| = k\frac{keq}{R^2}$
- $|\vec{E}| = k\frac{keq}{r^2}$

9. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?

- a
- b
- c
- d
10. Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of opposite sign and different magnitudes?

- □ a
- □ b
- □ c
- □ d
10. Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of opposite sign and different magnitudes?

- [] a
- [] b
- [] c
- [] d
amoeba conductor
conductor
E=0
conducting dome

belt

insulating stand

ground
Area = $A' = A \cos \theta$

both surfaces have the same flux!
\(Q_1 \)

\(E = 0 \)

\(Q_2 \)

\(Q_3 \)

\(R_1 \)

\(R_2 \)

(a)

(b)