electrical energy & capacitance

• today & tomorrow
• first: wrap up Gauss’ law
• rest of the week: circuits/current/resistance
• NEXT MON: exam I

multiple choice, cumulative
more details throughout the week
(a) $E = 0$

(b)
High PE

\[
\begin{align*}
\text{A} & \quad \Delta \vec{x} & \quad \text{B} \\
\text{x}_i & \quad \text{x}_f
\end{align*}
\]

\[\Delta x = x_f - x_i\]

\[
\begin{align*}
q & \quad \vec{E} & \quad q\vec{E}
\end{align*}
\]

Low PE
(a)

- \(q \vec{E} \)

\(-q \vec{E} \)

\(\Delta x \)

\(\vec{E} \)

(b)

\(m \vec{g} \)

\(\vec{g} \)

\(\Delta x \)
\[E = k_e \frac{q}{r^2} \]

\[V = k_e \frac{q}{r} \]
\[V_2 = \frac{k_e q_2}{r_{12}} \]
\[V_2 = \frac{k_e q_2}{r_{12}} \]

\[V_1 = \frac{k_e q_1}{r_{12}} \]
\(V_2 = \frac{k_e q_2}{r_{12}} \)

\(P \)

\(P' \)

\(r_{12} \)

\(q_2 \)

\(q_1 \)

\(q_2 V_1 = q_1 V_2 \)

\(P E = \frac{k_e q_1 q_2}{r_{12}} \)
PE = (1 due to 2) + (2 due to 1)
(E to bring 1 close to 2)
(E to bring 2 close to 1)
\[PE = \frac{k_e q_1 q_2}{r_{12}} = q_2 V_1 = q_1 V_2 \]

\[PE = (1 \text{ due to 2}) + (2 \text{ due to 1}) \]

\[(E \text{ to bring 1 close to 2}) \]

\[(E \text{ to bring 2 close to 1}) \]
\[PE = PE_{1\&2} + PE_{2\&3} + PE_{1\&3} = PE_{2\&1} + PE_{3\&2} + PE_{3\&1} = k_e \left(\frac{q_1q_2}{r_{12}} + \frac{q_1q_3}{r_{13}} + \frac{q_2q_3}{r_{23}} \right) \]
\[PE = \frac{1}{2} \sum_{i=1}^{3} \sum_{\substack{j=1 \atop j \neq i}}^{3} \frac{k_e q_i q_j}{r_{ij}} \]

\[
= \frac{1}{2} \left(\frac{k_e q_2 q_1}{r_{21}} + \frac{k_e q_3 q_1}{r_{31}} + \frac{k_e q_1 q_2}{r_{12}} + \frac{k_e q_3 q_2}{r_{32}} + \frac{k_e q_1 q_3}{r_{13}} + \frac{k_e q_2 q_3}{r_{23}} \right) \\
= k_e \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)
\]
what is the potential energy of the “crystal”

\[\text{potential energy} = \frac{k q^2}{2a^2} \]
we just have to sum the energy of all unique pairs of charges.

so how many are there?
we just have to sum the energy of all unique pairs of charges.

so how many are there?

ways of choosing pairs from five charges = \(\binom{5}{2} = 5C_2 = \frac{5!}{2!(5-2)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10 \)
we just have to sum the energy of all unique pairs of charges.

so how many are there?

ways of choosing pairs from five charges = \(\binom{5}{2} = 5C_2 = \frac{5!}{2! (5-2)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10 \)

(1, 2) (1, 3) (1, 4) (1, 5)
(2, 3) (2, 3) (2, 5)
(3, 4) (3, 5)
(4, 5)
we just have to sum the energy of all unique pairs of charges.

so how many are there?

ways of choosing pairs from five charges = \(\binom{5}{2} = \frac{5!}{2!(5-2)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10 \)

(1, 2) (1, 3) (1, 4) (1, 5)
(2, 3) (2, 3) (2, 5)
(3, 4) (3, 5)
(4, 5)

<table>
<thead>
<tr>
<th>#, pairing type</th>
<th>separation</th>
<th>pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, center-corner</td>
<td>(a)</td>
<td>(1, 5) (2, 5) (3, 5) (4, 5)</td>
</tr>
<tr>
<td>4, adjacent corners</td>
<td>(a\sqrt{2})</td>
<td>(1, 4) (3, 4) (2, 3) (1, 2)</td>
</tr>
<tr>
<td>2, far corner</td>
<td>(2a)</td>
<td>(1, 3) (2, 4)</td>
</tr>
</tbody>
</table>
\[PE_{\text{square}} = 4 \text{ (energy of center-corner pair)} + 2 \text{ (energy of far corner pair)} + 4 \text{ (energy of adjacent corner pair)} \]

\[
= 4 \left[\frac{k_e q^2}{a} \right] + 2 \left[\frac{k_e q^2}{2a} \right] + 4 \left[\frac{k_e q^2}{a \sqrt{2}} \right] \\
= \frac{k_e q^2}{a} \left[4 + 1 + \frac{4}{\sqrt{2}} \right] \\
= \frac{k_e q^2}{a} \left[5 + 2 \sqrt{2} \right] \approx 7.83 \frac{k q^2}{a}
\]
it works for more complicated stuff
(a) Rocksalt

(b) Rutile

\[M = -1.75 \]

\[M = -4.82 \]
travel along surface:

E perpendicular to path everywhere

no work done!

electric force is conservative ...

equipotential lines?
contours of constant V
no work to move along them (like gravity)

$x, y =$ spatial coordinates
potential constant on lines

3d

$x, y =$ spatial coordinates
$z =$ electric potential

2d
conductor = mirror for field & potential lines
q conductor $E=0$
Circuit diagram symbol for voltage sources:

Batteries:

General constant voltage source:

\[W = mg\Delta y \]

\[W = \frac{1}{2} Q\Delta V = \frac{1}{2} \frac{Q^2}{C} \]
\[C_{eq} = C_1 + C_2 \]

\[Q_{tot} = Q_1 + Q_2 \]
\[
\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}
\]

(a) \hspace{4cm} (b)