Sample Exam 1 Questions

1. A charge of $100 \mu C$ is at the center of a cube of side 0.8 m. What is the flux through one face of the cube?
 - 1.9×10^6 N·m²/C
 - 3.7×10^4 N·m²/C
 - 2.5×10^1 N·m²/C
 - 0

2. Suppose three positively charged particles are constrained to move on a fixed circular track. If all the charges were equal, an equilibrium arrangement would obviously be a symmetrical one with the particles spaced 120° apart around the circle. Suppose two of the charges have equal charge q, and the equilibrium arrangement is such that these two charges are 90° apart rather than 120°. What is the relative magnitude and sign of the third charge?
 - larger than either q_1 or q_2 and positive
 - smaller than either q_1 or q_2 and positive
 - larger than either q_1 or q_2 and negative
 - smaller than either q_1 or q_2 and negative

3. A positive charge of q and a negative charge of $-5q$ are placed a distance d apart. For reference, let us say the charges are along a horizontal line, with the positive charge on the right and the negative charge on the left. Determine one point (other than infinity) at which the total electric field is zero.
 - to the right of the negative charge
 - to the right of the positive charge
 - to the right of the negative charge
 - to the left of the negative charge

4. If the net flux through a closed surface is zero, the following four statements could be true. Which of the statements must be true?
 - There are no charges inside the surface
 - The net charge inside the surface is zero
 - The electric field is zero everywhere on the surface
 - The number of electric field lines entering the surface equals the number leaving the surface

5. In the figure above, a point charge $1Q^+$ is at the center of an imaginary spherical Gaussian surface and another point charge $2Q^+$ is outside of the Gaussian surface. Point P is on the surface of the sphere. Which one of the following statements is true?
Both contribute to the net electric flux through the sphere but only $1Q^+$ contributes to the electric field at point P.

Both charges contribute to the net electric flux through the sphere but only $2Q^+$ contributes to the electric field at point P.

Only $1Q^+$ contributes to the net electric flux through the sphere but both charges contribute to the electric field at point P.

Only $2Q^+$ contributes to the net electric flux through the sphere but both charges contribute to the electric field at point P.

Only $1Q^+$ contributes to the net electric flux through the sphere and to the electric field at point P on the sphere.

Only $2Q^+$ contributes to the net electric flux through the sphere and to the electric field at point P on the sphere.

I don’t know (this answer is worth $1/10$ of full credit)

6. A slab of insulating material, infinite in two of its three dimensions, has a uniform positive charge density ρ, shown at left. Suppose an electron of charge $-e$ and mass m_e can more freely within the slab, and is released from rest at a distance x from the center. The electron will subsequently undergo simple harmonic motion; which expression gives the correct variation of frequency with ρ, e, and m_e?

- $f \propto \sqrt{\rho e/m_e}$
- $f \propto \sqrt{\rho m_e/e}$
- $f \propto \rho m_e/e$
- $f \propto \rho e/m_e$
- $f \propto \sqrt{\rho e m_e}$

7. A sphere the size of a basketball is charged to a potential of $-1000\, \text{V}$. About how many extra electrons are on it, per cm2 of surface?

- 4×10^3
- 5×10^7
- 8×10^{10}
- 9×10^{21}

8. A spherical balloon contains a positively charged object at its center. As the balloon is inflated to a greater volume while the charged object remains at the center, does the electric flux at the surface of the balloon:

- increase
- decrease
- remain the same

9. Find the equivalent capacitance for the combination of capacitors shown at left.

- $10C$
- $1.2C$
- $2.4C$
- C
10. A capacitor is constructed from two square plates of sides l and separation d. A dielectric is inserted a distance x into the capacitor, as shown at right. In what direction is the force on the dielectric?
 - up
 - to the right
 - to the left
 - down
 - there is no net force

11. Referring to the figure above, in what direction would the force be if the inserted section were a conductor instead of a dielectric?
 - up
 - to the right
 - to the left
 - down
 - there is no net force

12. An electron (of charge $-e$ and mass m_e) enters a region of uniform electric field $\vec{E} = 800 \hat{x} \text{ [N/C]}$ with velocity $\vec{v}_i = 1.5 \times 10^5 \hat{x} \text{ [m/s]}$. What is magnitude the acceleration $|\vec{a}|$ of the electron due to the electric field?
 - $-3.5 \times 10^{13} \text{ [m/s}^2]\]
 - $4.6 \times 10^8 \text{ [m/s}^2]\]
 - $-1.4 \times 10^{14} \text{ [m/s}^2]\]
 - $6.8 \times 10^{12} \text{ [m/s}^2]\]

13. In the figure at left, three point charges are connected by unbreakable strings of length d. What is the equilibrium angle θ?
 - 90°
 - 180°
 - 135°
 - 90°

*Note that $\frac{d}{dx} \frac{1}{\sin x} = -\frac{\cos x}{\sin^2 x}$ and $\frac{d}{dx} \frac{1}{\cos x} = \frac{\sin x}{\cos^2 x}.$