1. In a certain region of space, the electric potential is zero everywhere along the \(x \) axis. From this we can conclude that the \(x \) component of the electric field in this region is

- zero
- in the \(x \) direction
- in the \(-x \) direction.

2. In a certain region of space, the electric field is zero. From this we can conclude that the electric potential in this region is

- zero
- constant
- positive
- negative.

3. An electron initially at rest is accelerated through a potential difference of 1 V, and gains kinetic energy \(KE_e \). A proton, also initially at rest, is accelerated through a potential difference of \(-1\) V, and gains kinetic energy \(KE_p \). Which of the following must be true?

- \(KE_e < KE_p \)
- \(KE_e = KE_p \)
- \(KE_e > KE_p \)
- not enough information

4. Consider a collection of charges in a given region, and suppose all other charges are distant and have negligible effect. The electric potential is taken to be zero at infinity. If the electric potential at a given point in the region is zero, which of the following statements must be true? (Only one is \textit{always} true.)

- The electric field is zero at that point.
- The electric potential energy is a minimum at that point.
- There is no net charge in the region.
- Some charges in the region are positive and some are negative.
- The charges have the same sign and are symmetrically arranged around the given point.

5. A spherical balloon contains a positively charged object at its center. As the balloon is inflated to a greater volume while the charged object remains at the center, does the electric potential at the surface of the balloon:

- increase
- decrease
- remain the same