Quiz 5: So you read the exam solutions . . .

1. If you place a negatively charged particle in an electric field, the charge will move
 □ from higher to lower electric potential and from lower to higher potential energy.
 □ from higher to lower electric potential and from higher to lower potential energy.
 □ from lower to higher electric potential and from lower to higher potential energy.
 □ from lower to higher electric potential and from higher to lower potential energy.

2. A pyramid has a square base of side a, and four faces which are equilateral triangles. A charge Q is placed on the center of the base of the pyramid. What is the net flux of electric field emerging from one of the triangular faces of the pyramid?
 □ Uncertain: we must know whether Q is just above or below the base.
 □ 0
 □ $\frac{Q}{\varepsilon_0}$
 □ $\frac{Qa^2}{2\varepsilon_0}$
 □ $\frac{Q}{2\varepsilon_0}$

3. In a region of uniform electric field \vec{E}, a charged particle experiences an acceleration \vec{a}. If a second particle with four times the charge and twice the mass of the first particle enters that same region, it will experience an acceleration
 □ $\frac{1}{4}\vec{a}$
 □ $\frac{1}{2}\vec{a}$
 □ \vec{a}
 □ $2\vec{a}$
 □ $4\vec{a}$

4. A spherical balloon contains a positively charged object at its center. As the balloon is inflated to a greater volume while the charged object remains at the center, does the electric flux at the surface of the balloon:
 □ increase
 □ decrease
 □ remain the same

5. Two particles are separated by a distance of 3.0 m; each exerts an electric force of 1.0 N on the other. If one particle carries 10 times as much electric charge as the other, what is the magnitude of the smaller charge?
 □ 10 pC
 □ 10 µC
 □ 10 nC
 □ 10 kC