Physics 126

P. LeClair
OFFICIAL THINGS

• Dr. Patrick LeClair
 - leclair.homework@gmail.com
 - @pleclair on twitter
 - facebook/google+/etc
 - offices: 2050 Bevill, 323 Gallalee; lab: 1053 Bevill
 - 857-891-4267 (cell)

• Office hours:
 - MW 1-2pm, F 12-2pm in Gallalee 323
 - TuTh 1-3pm in Bevill 2050

• other times by appointment
OFFICIAL THINGS

Lecture/Lab:

• lecture in 329 Gallalee, labs in 112 Gallalee
• M-W 11-12:55

“Recitation”:

• F 11-11:55
• usually new material, but time spent on HW
Misc. Format Issues

- lecture and labs will be *somewhat* linked
- labs will mostly be ‘circuits’ and electronics
 - *practical* knowledge more than theory
 - will not bother with the traditional labs

- friday recitations: usually new material
- working in groups is encouraged *for homework*
SOCIAL INTERACTION

- we need you in groups of ~3 for labs to start with
- groups are not assigned ...
 - so long as they remain functional
 - even distribution of workload
Grading and so forth

- labs/exercises 15%
- homework 25%

given weekly via PDF
- quizzes

maybe. counts with HW
- 4 exams (15% each)

3 ‘hour’ exams

comprehensive (takehome) final
Homework

• new set every week, on course blog [pdf]
• problems due a week later (mostly)
• hard copy or email (e.g., scanned, cell pic) are OK
 Gallalee or Bevill mailbox
 at the start of class
• can collaborate - BUT turn in your own
• have to show your work to get credit.
1.

<table>
<thead>
<tr>
<th>Find / Given:</th>
<th>Sketch:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant equations:</th>
<th>Symbolic solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numeric solution:</th>
<th>Double Check</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimensions</td>
</tr>
<tr>
<td></td>
<td>Order-of-magnitude</td>
</tr>
</tbody>
</table>
QUizzes

• once and a while, there may be a quiz
• almost the same as current HW problems
• previous lecture’s material
• 5-10 min anticipated

• do the homework & reading, and it will be trivial
Labs / Exercises

- Labs will be very different...
 - Focus on learning how to build electronic stuff
 - Initially: focused labs to learn concepts & practice
 - Later: team project
- Inquiry-driven: usually no set procedure
- Some formal reports, mostly not
- Time is always critical...
 - Read carefully, work efficiently
STUFF YOU NEED

• textbook (Halliday & Resnick; get a used one)

• calculator

• paper & writing implement

• useful: flash drive, access to a computer you can install stuff on
USEFUL THINGS

For some material (e.g., optics and circuits) we will make use of supplemental online notes from PH102, which you can find there:

http://faculty.mint.ua.edu/~pleclair/ph102/Notes/

have the Feynman lectures in the undergrad lounge ...
SHOWING UP

• no make-up of in-class work or homework
 “acceptable” + documented gets you a BYE

• missing an exam is seriously bad.
 acceptable reason ... makeup or weight final

• lowest single lab, homework are dropped.

• Final is take-home, but you will have questions ...
 so stick around for a bit of finals week
INTERNETNS

• we have our own intertubes:
 - http://ph126.blogspot.com/
 - updated very often
 - comments allowed & encouraged
 - rss feed, integrated with twitter (#ua-ph126)

• google calendar (you can subscribe)

• Facebook group (find each other)
 - can add RSS feed of blog to facebook

• google+, it is the new shiny

• check blog & calendar before class
Quick advertisement:

Phy-EE double major

- Electrical and Computer Engineering majors need as few as 4 additional hours to complete a second major in Physics.
- This combination of fundamental and applied physics can be highly advantageous when the graduate enters the job market.
Today

- Vectors and vector functions

- Laws of E&M in brief

- Charge & electric forces in brief
Our friend the vector

• we will be doing terrible things with them this semester.

• vector = quantity requiring an arrow to represent
 – coordinate-free description
 – described by basis (unit) vectors of a coordinate system

• proper vectors are unchanged by coordinate transformations ...

Adding & subtracting vectors

• commutative, \(A+B = B+A \)
• associative, \(A + (B+C) = (A+B) + C \)
• subtracting = add negative (reverse direction)

• add head-tail geometrically (law of cosines)
• add by component (using unit vectors)
Geometrically:

\[|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| - 2|\vec{a}||\vec{b}| \cos \theta \]

By components: first choose a basis/coordinate system

\[\vec{a} = a_x \hat{x} + a_y \hat{y} \quad \vec{b} = b_x \hat{x} + b_y \hat{y} \]

\[\vec{a} + \vec{b} = (a_x + b_x) \hat{x} + (a_y + b_y) \hat{y} \]

magnitude identical to geometric approach
Scalar multiplication

- Duh, the vector gets longer.
- By component:
 \[c\vec{A} = ca_x\hat{x} + ca_y\hat{y} \]
- Geometrically: the arrow gets \(c \) times longer
- Distributive.
 \[c \left(\vec{A} + \vec{B} \right) = c\vec{A} + c\vec{B} \]
Scalar ("dot") product

- product of vector A and the projection of B onto A
- scalar product of two vectors gives a scalar

\[\mathbf{A} \cdot \mathbf{B} = a_x b_x + a_y b_y = |\mathbf{A}| |\mathbf{B}| \cos \theta_{AB} \]

- commutes, distributes

\[\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A} \quad \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C} \]

- two vectors are perpendicular if and only if their scalar product is zero
Put another way, given two vectors, the angle between them can be found readily:

\[\theta = \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \right) \]

Of course, this implies that if \(\mathbf{a} \) and \(\mathbf{b} \) are orthogonal (right angles), then

\[\mathbf{a} \cdot \mathbf{b} = 0 \]

Moreover, two vectors are orthogonal (perpendicular) if and only if their dot product is zero, and they have non-zero length, providing a simple way to test for orthogonality. A few other properties are tabulated below, as well as the scalar product between unit vectors in different coordinate systems.

Table 4: Algebraic properties of the scalar product

<table>
<thead>
<tr>
<th>Formula</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a})</td>
<td>commutative</td>
</tr>
<tr>
<td>(\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c})</td>
<td>distributive</td>
</tr>
<tr>
<td>(\mathbf{a} \cdot (r\mathbf{b} + \mathbf{c}) = r(\mathbf{a} \cdot \mathbf{b}) + r(\mathbf{a} \cdot \mathbf{c}))</td>
<td>bilinear</td>
</tr>
<tr>
<td>((c_1 \mathbf{a}) \cdot (c_2 \mathbf{b}) = (c_1 c_2)(\mathbf{a} \cdot \mathbf{b}))</td>
<td>multiplication by scalars</td>
</tr>
<tr>
<td>if (\mathbf{a} \perp \mathbf{b}), then (\mathbf{a} \cdot \mathbf{b} = 0)</td>
<td>orthogonality</td>
</tr>
</tbody>
</table>

Table 5: Scalar products of unit vectors

<table>
<thead>
<tr>
<th>Cartesian</th>
<th>Spherical</th>
<th>Cylindrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{i})</td>
<td>(\hat{\mathbf{r}})</td>
<td>(\hat{R})</td>
</tr>
<tr>
<td>(\hat{j})</td>
<td>(\hat{\theta})</td>
<td></td>
</tr>
<tr>
<td>(\hat{k})</td>
<td>(\hat{\phi})</td>
<td>(\hat{k})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{i})</td>
<td>(\sin \theta \cos \phi)</td>
<td>(\cos \theta \cos \phi)</td>
</tr>
<tr>
<td>(\hat{j})</td>
<td>(\sin \theta \sin \phi)</td>
<td>(\cos \theta \sin \phi)</td>
</tr>
<tr>
<td>(\hat{k})</td>
<td>(-\sin \phi)</td>
<td>(-\sin \phi)</td>
</tr>
</tbody>
</table>

Vector products:

The `cross` or vector product between these two vectors results in a pseudovector, also known as an `axial vector`.

An easy way to remember how to calculate the cross product of these two vectors, \(\mathbf{P} \), is by using the determinant of a matrix:

\[\mathbf{P} = \begin{vmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ \mathbf{a}_x & \mathbf{b}_x & \mathbf{c}_x \\ \mathbf{a}_y & \mathbf{b}_y & \mathbf{c}_y \end{vmatrix} \]

Pseudovectors act just like real vectors, except they gain a sign change under improper rotation. See for example, the Wikipedia page `Pseudovector`. An improper rotation is an inversion followed by a normal (proper) rotation, just what we are doing when we switch between right- and left-handed coordinate systems. A proper rotation has no inversion step, just rotation.
vector ("cross") product

- product of vector A and B, gives 3rd vector perpendicular to A-B plane

\[|\vec{A} \times \vec{B}| = |\vec{A}||\vec{B}| \sin \theta_{AB} \]
\[\vec{A} \times \vec{B} = \vec{A}\vec{B} \sin \theta_{AB} \hat{n} \]

- Distributes, does **NOT** commute

\[\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) + (\vec{A} \times \vec{C}) \]
\[\vec{A} \times \vec{B} = - (\vec{B} \times \vec{A}) \]
familiarize yourself with these things later ...

<table>
<thead>
<tr>
<th>formula</th>
<th>relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vec{a} \times \vec{b} = -\vec{b} \times \vec{a})</td>
<td>anticommutative</td>
</tr>
<tr>
<td>(\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}))</td>
<td>distributive over addition</td>
</tr>
<tr>
<td>((r\vec{a}) \times \vec{b} = \vec{a} \times (r\vec{b}) = r(\vec{a} \times \vec{b}))</td>
<td>compatible with scalar multiplication</td>
</tr>
<tr>
<td>(\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0)</td>
<td>not associative; obeys Jacobi identity</td>
</tr>
<tr>
<td>(\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b}))</td>
<td>triple vector product expansion</td>
</tr>
<tr>
<td>((\vec{a} \times \vec{b}) \times \vec{c} = -\vec{c} \times (\vec{a} \times \vec{b}) = -\vec{a}(\vec{b} \cdot \vec{c}) + \vec{b}(\vec{a} \cdot \vec{c}))</td>
<td>triple vector product expansion</td>
</tr>
<tr>
<td>(\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b}))</td>
<td>triple scalar product expansion†</td>
</tr>
<tr>
<td>(</td>
<td>\vec{a} \times \vec{b}</td>
</tr>
<tr>
<td>if (\vec{a} \times \vec{b} = \vec{a} \times \vec{c}) then (\vec{b} = \vec{c}) iff (\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c})</td>
<td>lack of cancellation</td>
</tr>
</tbody>
</table>
vector ("‘cross’") product

• ‘perpendicular’ direction not unique!
 choice of ‘handedness’ or chirality. we pick RH.

\[
\begin{align*}
\hat{i} \times \hat{j} &= \hat{k} & -\hat{\mathbf{r}} &= \hat{\mathbf{c}} \times \hat{s} \\
\hat{j} \times \hat{k} &= \hat{i} & -\hat{s} &= \hat{\mathbf{r}} \times \hat{\mathbf{c}} \\
\hat{k} \times \hat{i} &= \hat{j} & -\hat{\mathbf{c}} &= \hat{s} \times \hat{\mathbf{r}}
\end{align*}
\]

cross products are not the same as their mirror images
Because of ‘handedness’ choice, cross products do not transform like true vectors under inversion.

- e.g., coordinate systems

\[\hat{x} \times \hat{y} = \hat{z} \]

- cannot make RH into LH by proper rot.
- requires an inversion too (mirror flip)
- rotation + sign change required

- lack of invariance under improper rotation makes it a pseudovector or axial vector
- i.e., you need an axis of rotation to make sense of it.
- e.g., torque, magnetic field
• when we see cross products ...
 - somewhere, there is an axis of rotation
 - the problem is inherently 3D

• cross product of two ‘normal’ polar vectors = axial vector
 - polar = velocity, momentum, force
 - axial = torque, angular momentum, magnetic field

• axial vector = handedness = RH rule required
• axial vector doesn’t change properly in a mirror
 - e.g., angular momentum of car wheels reflected in a mirror

• if there is no change when reflected in a mirror ... polar!
(polar) \times (polar) = (axial)

\mathbf{r} \times \mathbf{p} = \mathbf{L} \quad \text{(angular momentum)}

(axial) \times (axial) = (axial)

\mathbf{\Omega} \times \mathbf{L} = \tau \quad \text{(gyroscope)}

(polar) \times (axial) = (polar)

\mathbf{v} \times \mathbf{B} = \mathbf{F} \quad \text{(magnetic force)}

(any) \cdot (any) = (scalar)

(polar) + (axial) = (neither) !!!
• cyclic permutation encodes chirality ...

\[\mathbf{c} = \mathbf{a} \times \mathbf{b} \]

\[
\mathbf{c} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
a_x & a_y & a_z \\
b_x & b_y & b_z
\end{vmatrix} = \begin{vmatrix}
a_y & a_z \\
b_y & b_z
\end{vmatrix} \hat{i} + \begin{vmatrix}
a_z & a_x \\
b_z & b_x
\end{vmatrix} \hat{j} + \begin{vmatrix}
a_x & a_y \\
b_x & b_y
\end{vmatrix} \hat{k}
\]

\[
= (a_y b_z - a_z b_y) \hat{i} + (a_z b_x - a_x b_z) \hat{j} + (a_x b_y - a_y b_x) \hat{k}
\]

• xyz, yzx, zxy = + \; \; \; \; yxz, xzy, zyx = -

• know and love this little trick

• note ... one can use the cross product to find the vector normal to a given plane

\[\hat{n} = \frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} \]
Vector triples ... key identities that will come up often.

\[\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (\text{vec}) \cdot (\text{vec} \times \text{vec}) = \text{vec} \cdot \text{vec} = \text{scalar} \]

\[\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}) \]

cyclic permutation! break it, and pick up a minus sign

\[\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = -\mathbf{B} \cdot (\mathbf{A} \times \mathbf{C}) \]

(also, the volume of a parallelepiped)
component form is nicely simple in matrix notation

\[
\vec{A} \cdot (\vec{B} \times \vec{C}) =
\begin{vmatrix}
 a_x & a_y & a_z \\
 b_x & b_y & b_z \\
 c_x & c_y & c_z \\
\end{vmatrix} =
(a_x b_y c_z - a_x b_z c_y) + (a_y b_z c_x - a_y b_x c_z) + (a_z b_x c_y - a_z b_y c_x)
\]

\[
xyz, \ yzx, \ zxy = + \quad \text{yxz, xzy, zyx} = -
\]
distributes, associates, etc, and this works too:

\[
\vec{A} \cdot (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) \cdot \vec{C}
\]

this is nonsense though. why?

\[
(\vec{A} \cdot \vec{B}) \times \vec{C}
\]
vector triple

\[\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} (\vec{A} \cdot \vec{C}) - \vec{C} (\vec{A} \cdot \vec{B}) \neq (\vec{A} \times \vec{B}) \times \vec{C} \]

vec scal vec scal

“BAC-CAB” rule
it will come up; this reduction formula is handy

a reminder that X does not commute
we remember how to define positions & directions
infinitesimal displacements along a path

\[(x, y, z) \rightarrow (x + dx, y + dy, z + dz)\]

described by a infinitesimal vector

\[d\vec{l} = dx \hat{x} + dy \hat{y} + dz \hat{z}\]

depends on coordinate system

\[d\vec{l} = dr \hat{r} + r \sin \theta \ d\theta \hat{\theta} + r \ dr \ d\theta \hat{\phi} \quad \text{(spherical)}\]
cartesian \(x, y, z \)
cylindrical \(R, \phi, z \)
spherical \(r, \theta, \phi \)
in E&M, we often have a SOURCE point and a FIELD point
we are interested in quantities depending on their separation

(where stuff is) \(\vec{r}' \) \(\vec{r} \) \(\vec{i} = \vec{r} - \vec{r}' \)

(where you are) \(\vec{r} \)

separation vector
(between you & stuff)

like in physics 1: the origin can be in an arbitrary place

you are interested in how far you are from stuff
\(r = \) from origin to you
\(r' = \) from origin to stuff
difference = from stuff to you!
we need two new concepts to deal with vector fields.

but only two!

(1) Flux

(2) Circulation
Flux?

basically, the net flow of a quantity through a region
e.g., liquid flux: liters/sec through a pipe of diameter d

Need to define a flow and a surface!

(Flux) = (average normal component)(surface area)

$$\Phi_{\text{water}} = (\rho \vec{v} \cdot \hat{n}) A$$

net flux through a closed region:
must be a source or sink inside!
Net flux through circle - more arrows leave than enter

\[\vec{F} = \frac{\hat{r}}{r^2} \]
Area = \(A' = A \cos \theta \)

both surfaces have the same flux!
net ‘flow’ of a vector field out of a closed region

(a) all S have same flux

(b) all have zero flux
all that enters leaves

net 'flow' of a vector field out of a closed region
Circulation?

Just what you think it is: is the field ‘swirling’ at all? Does it circulate?
Given some loop, is there net rotation?

E.g., stirred pot
there is no net flux
there is a circulation

circulation = (average tangential speed around a loop)(circumference)

pick a loop in the field, and find the average tangential velocity
if it is nonzero, the field circulates!
net CCW tangential velocity
angular velocity about z axis

\[\vec{F}(x, y) = -y \hat{x} + x \hat{y} \]
E&M: all about flux and circulation of E & B

(flux of E through a closed surface) = $\frac{(\text{net charge inside})}{\varepsilon_o}$

(flux of B through any closed surface) = 0

given a curve C bounding a surface S:

(circulation of E around C) = $\frac{d}{dt}$ (flux of B through S)

c^2 (circulation of B around C) = $\frac{d}{dt}$ (flux of E through S) + $\frac{(\text{flux of electric current through S})}{\varepsilon_o}$
So how to do this quantitatively?

We need vector derivatives for that. Later.
The laws of classical physics, in brief

1. Motion

\[
\frac{d\vec{p}}{dt} = \vec{F}
\]

where

\[
\vec{p} = \frac{m\vec{v}}{\sqrt{1 - v^2/c^2}}
\]

Newton, with Einstein’s modification

2. Gravitation

\[
\vec{F} = -G \frac{m_1 m_2}{r^2} \hat{r}_{12}
\]
3. Conservation of charge

\[\nabla \cdot \vec{j} = - \frac{d\rho}{dt} \]

(flux of current through closed surface) = - (rate of change of charge inside)

any conservation of stuff:

(\text{net flow of stuff out of a region}) = (\text{rate at which amount of stuff inside region changes})
4. Maxwell’s equations

\[\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_r \varepsilon_0} \quad \text{(flux of E thru closed surface) = (charge inside)} \]

\[\nabla \cdot \vec{B} = 0 \quad \text{(flux of B thru closed surface) = 0} \]

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \text{(circulating E) = (time varying B)} \]

\[\text{(line integral of E around loop) = -(change of B flux through loop)} \]

\[\epsilon_0 c^2 \nabla \times \vec{B} = \vec{j} + \varepsilon_r \frac{\partial \vec{E}}{\partial t} \]

\[\text{(circulating B) = (time varying E)} \]

\[\text{(integral of B around loop) = (current through loop) + (change of E flux through loop)} \]
4. Maxwell’s equations (alt)

\[\mathbf{\nabla} \cdot \mathbf{E} = \frac{\rho}{\epsilon_r \epsilon_0} \]
Gauss: electric charge = source of electric fields

\[\mathbf{\nabla} \cdot \mathbf{B} = 0 \]
There are no magnetic charges

\[\mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]
Faraday: time-varying B makes a circulating E

\[\epsilon_0 c^2 \mathbf{\nabla} \times \mathbf{B} = \mathbf{j} + \epsilon_r \frac{\partial \mathbf{E}}{\partial t} \]
Ampere: currents and time-varying E make B

5. Force law

\[\mathbf{F} = q \mathbf{E} + q \mathbf{v} \times \mathbf{B} \]
And that’s all of it!

Of course, the solutions are tougher ... but we have a whole semester for that.
electrostatics

or, electric forces when nothing is moving.
Summarizing the properties of charge:

1. Charge is quantized in units of $|e| = 1.6 \times 10^{-19}$ C
2. Electrons carry one unit of negative charge, $-e$
3. Protons carry one unit positive charge, $+e$
4. Objects become charged by gaining or losing electrons, not protons
5. Electric charge is always conserved

Table 3.1: Properties of electrons, protons, and neutrons

<table>
<thead>
<tr>
<th>Particle</th>
<th>Charge [C]</th>
<th>$[e]$</th>
<th>Mass [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron (e^-)</td>
<td>-1.60×10^{-19}</td>
<td>-1</td>
<td>9.11×10^{-31}</td>
</tr>
<tr>
<td>proton (p^+)</td>
<td>$+1.60 \times 10^{-19}$</td>
<td>+1</td>
<td>1.67×10^{-27}</td>
</tr>
<tr>
<td>neutron (n^0)</td>
<td>0</td>
<td>0</td>
<td>1.67×10^{-27}</td>
</tr>
</tbody>
</table>
a) before

b) contact

c) after

charged rubber rod
“Little pieces of tissue paper (or light grains of sawdust) are attracted by a glass rod rubbed with a silk handkerchief (or by a piece of sealing wax or a rubber comb rubbed with flannel).”

- from a random 1902 science book
neutral metal sphere

b) charged rubber rod

d)
\begin{align*}
q_1 &\quad F \\
q_2 &\quad F
\end{align*}

\begin{align*}
+ &\quad \hat{r}_{12} \\
+ &\quad r_{12}
\end{align*}
2. Three point charges lie along the x axis, as shown at left. A positive charge $q_1 = 15 \, \mu C$ is at $x = 2 \, m$, and a positive charge of $q_2 = 6 \, \mu C$ is at the origin. Where must a negative charge q_3 be placed on the x-axis **between the two positive charges** such that the resulting electric force on it is zero?
2. Three point charges lie along the \(x\) axis, as shown at left. A positive charge \(q_1 = 15 \, \mu C\) is at \(x = 2\, m\), and a positive charge of \(q_2 = 6 \, \mu C\) is at the origin. Where must a negative charge \(q_3\) be placed on the \(x\)-axis between the two positive charges such that the resulting electric force on it is zero?

\[
\sim 0.77\, m \text{ from } q_2
\]

or

\[
\sim 1.23\, m \text{ from } q_1
\]
equal charges

field: $A > B > C$
opposite charges
“dipole”

e.g.,
LiF & HF
unequal
like
unequal unlike
6. A circular ring of charge of radius has a total charge of uniformly distributed around it. The magnitude of the electric field at the center of the ring is:

\[|E| = \frac{kq}{r^2} \]

\[|E| = \frac{kq}{(R+r)^2} \]

\[|E| = \frac{kq}{R^2} \]

\[|E| = \frac{kq}{r^2} \]

\[\text{none of these.} \]

7. Two isolated conducting spheres have a charge of \(q \) and \(-3q\), respectively. They are connected by a conducting wire, and after equilibrium is reached, the wire is removed such that both spheres are again isolated. What is the charge on each sphere?

\[q, -3q \]

\[-q, -2q \]

\[0, -2q \]

\[-q, 0 \]

\[-2q, q \]

8. An electric point charge \(+q\) is placed exactly at the center of a hollow conducting sphere of radius \(R \). Before placing the point charge, the conducting sphere had zero net charge. What is the magnitude of the electric field outside the conducting sphere at a distance \(r \) from the center of the conducting sphere?

\[|E| = \frac{kq}{r^2} \]

\[|E| = \frac{kq}{(R+r)^2} \]

\[|E| = \frac{kq}{R^2} \]

\[|E| = \frac{kq}{r^2} \]

\[\text{none of these.} \]

9. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?

\[\square \text{a} \]

\[\square \text{b} \]

\[\square \text{c} \]

\[\square \text{d} \]
3.10 Questions

6. A circulator ring of charge of radius has a total charge of uniformly distributed around it.

The magnitude of the electric field at the center of the ring is:

\[|E| = \frac{kq}{r^2} \]

7. Two isolated dielectric conductive spheres have a charge of \(q \) and \(-3q \), respectively. They are connected by a conducting wire, and after equilibrium is reached, the wire is removed such that both spheres are again isolated. What is the charge on each sphere?

\[q, -3q \]

8. An electric charge of \(+q \) is placed exactly at the center of a hollow conducting sphere of radius \(R \). Before placing the point charge, the conducting sphere had zero net charge.

What is the magnitude of the electric field outside the conducting sphere at a distance \(r \) from the center of the conducting sphere?

\[|E| = \begin{cases} \frac{kq}{r^2} & r > R \\ \frac{kq}{(R+r)^2} & r \leq R \end{cases} \]

9. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?

- a
- b
- c
- d

Dr. LeClair

PH102/Geophysical Physics I

[diagram with electric field lines]
10. Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of opposite sign and different magnitudes?

- a
- b
- c
- d
10. Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of *opposite sign* and *different magnitudes*?

- [] a
- [] b
- [] c
- [] d
both surfaces have the same flux!

Area = \(A' = A \cos \theta \)