## EMAP PHYSICS

## P. LeClair <br> UA Department of Physics \& Astronomy

## The plan

- What do you need to survive physics? Thrive?
- math
- critical thinking / problem solving
- experiments ...
- What are we going to do?
- not PHI05/I06 ...
- the 'flavor' of physics
- some tools you will need
- some background as to how we think


## How?

- We'll mostly do experiments.
- Experiments similar to PHI05/I06
- Hypothesis + reality check ...
- have an idea, then test it
- how good was the test?
- math is the language we use for this


## Specifically?

- Each session has one key idea
- This idea is testable ... or it is not science
- So we test it.
- How good is our test? How well did it work?
- a measure of the result \& accuracy
- does it make any sense? predict something else ...


## Example

- Your reaction time is better than mine ...
- Every time? By how much?
- What is the variability?
- How good is the measurement anyway?


## Schedule

| Session | Lab | Math-related things |
| :--- | :--- | :--- |
| Tues 7 July 3:45-5:45 | intro / Error analysis | uncertainty, basic <br> statistics (mean, std. dev) |
| Fri 10 July 3:45-5:45 | Coefficient of restitution | sequence \& series, <br> logarithms, power laws |
| Tues 14 July 4-6 | Atomic spectroscopy | trigonometry |
| Thu 16 July 1:30-3:30 | dc circuits | linear relationships |
| Tue 21 July 3:45-5:45 | resistive circuits (resistor <br> networks) | systems of linear <br> equations |
| Wed 22 July 1:30-3:30 | Planck's constant <br> determination | trigonometry, exponential <br> behavior, linear <br> regression |
| Tue 28 July 1:30-3:30 | RC circuits | exponential behavior, <br> non-linear regression, <br> logarithms |
| Fri 31 July 1:30-3:30 | mutual inductance / <br> wireless power | linearization, rate of <br> change, trig functions |
| Mon 3 Aug 1:30-3:30 | homopolar motors | vector relationships <br> (cross product) |
| Wed 5 Aug 1:30-3:30 | remote controls | time-dependent behavior, <br> trig functions, 3D <br> geometry in spherical <br> coordinates |

## Format

Quick ( $10-20 \mathrm{~min}$ ) intro to the idea / experiment
Do the experiment! groups of 5 or so

Analyze the data
was the idea right? put numbers on that ...
Repeat if necessary
What would you do next?
Follow-up ... homework!

## So: let's get at it!

- Today: gauging reaction time
- one measurement vs. many
- how does accuracy improve?
- how to measure accuracy?
- care \& feeding of data ...


## Homework for next time

- Bring in a small rubber ball of some kind
- Which sort bounces the 'best'
- What do we mean by 'best'


## My experiment: picking cards

- give each one a number
- Ace = I, $2=2$... Jack = II ... King = I3
- what is the average card?
- we expect it must be 7 ...
- what is the spread? how to define this?


## I 00 trials ...

## Card chosen

15.00


| 0 | 25 | 50 | 75 | 100 |
| :--- | :--- | :--- | :--- | :--- |

## equal number of each

average must be 7, if one chooses enough cards takes $\sim 50$ before 'luck' is moot!

Average of cards chosen

standard deviation is a measure of the variability dispersion in a population or data set
low standard deviation: data tends to lie close to the average (mean)
high standard deviation: data spread over a large range

data set: data clustered about average

many trials: follow a distribution
$\sim 68 \%$ within $+/-1$ standard deviation
$\sim 95 \%$ within $+/-2$ standard deviations
~99.7\% within +/- 3 ...

## so what?

- knowing the standard deviation tells you
- if subsequent measurements are outliers
- what to expect next
- accuracy of a set of data
- variability in a large batch
- "six sigma" - quality control
- means one out of 500 million!


## so what?

if the mean of the measurements is too far away from the prediction, then the theory being tested probably needs to be revised!
particle physics: 3-sigma standard typical more than that ... probably a new effect!

## Standard deviation

### 5.00

3.75

expect $75 \%$ of cards within 2 standard deviations of average
or, $75 \%$ are within about 4 cards from the average after 100 trials
or, $75 \%$ of cards should be between 3 and Jack (inclusive)
1.25

It works!
flip side: we could estimate the distribution of cards without prior knowledge (e.g., remove all 2's and 3's ... we could tell!)

0

| 0 | 25 | 50 | 75 | 100 |
| :--- | :--- | :--- | :--- | :--- |

## now you try ...

$$
\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad \sigma=\frac{1}{n} \sqrt{n\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}
$$

## say your data is $||.0,||.5| 2.0$,

$$
\begin{aligned}
\bar{x}_{3} & =\frac{1}{n} \sum_{i}^{n} x_{i}=\frac{1}{3}[11.0+11.5+12.0]=11.5 \\
\sigma_{3} & =\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\sqrt{\frac{1}{3}} \sqrt{\left.(11.0-11.5)^{2}+(11.5-11.5)^{2}+(12.0-11.5)^{2}\right)} \approx 0.41 \\
\sigma_{3} & =\frac{1}{3} \sqrt{3 \cdot\left(11.0^{2}+11.5^{2}+12.0^{2}\right)-(11.0+11.5+12.0)^{2}} \approx 0.41
\end{aligned}
$$

| point <br> point $i$ | distance <br> $x_{i}$ | running <br> average $\bar{x}$ | running <br> $\sigma$ |
| :---: | :---: | :---: | :---: |
| I | $28 . \mathrm{I}$ | $28 . \mathrm{I}$ | - |
| 2 | 28.5 | 28.3 | 0.20 |
| 3 | 28.7 | 28.4 | 0.25 |
| 4 | 28.3 | $\ldots$ | $\ldots$ |
| 5 | 28.0 | $\ldots$ | $\ldots$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |

