EMAP Physics Labs

Session	Lab	Math-related things
Tues 7 July 3:45-5:45	intro / Error analysis	uncertainty, basic statistics (mean, std. dev)
Fri 10 July 3:45-5:45	Coefficient of restitution	sequence & series, logarithms, power laws
Tues 14 July 4-6	Atomic spectroscopy	trigonometry
Thu 16 July 1:30-3:30	dc circuits	linear relationships
Tue 21 July 3:45-5:45	resistive circuits (resistor networks)	systems of linear equations
Wed 22 July 1:30-3:30	Planck's constant determination	trigonometry, exponential behavior, linear regression
Tue 28 July 1:30-3:30	RC circuits	exponential behavior, non- linear regression, logarithms
Fri 31 July 1:30-3:30	mutual inductance / wireless power	linearization, rate of change, trig functions
Mon 3 Aug 1:30-3:30	homopolar motors	vector relationships (cross product)
Wed 5 Aug 1:30-3:30	remote controls	time-dependent behavior, trig functions, 3D geometry in spherical coordinates

Lab	Things	The Idea
Error analysis	meter stick, paper, calculator. Excel is optional	Students gauge their reaction time for many independent trials. How to quantify error in measurement; the care and feeding of experimental data; graphing
Coefficient of restitution	stopwatch (online), meter stick, paper, calculator. Excel is optional	Analysis of a bouncing ball as it comes to rest. Infinite series for height of ball after <i>n</i> bounces; analyze height vs. <i>n</i> and time to reach <i>n</i> bounces
Atomic spectroscopy	Meter stick, diffraction grating, Hg & H lamps, calculator. Excel optional, but increasingly desirable.	Observe discrete emission lines of Hg and H lamps through a diffraction grating. Use basic trig to determine the wavelengths.
dc circuits	Many things from the physics department Excel required	Measurement of current-voltage relationship for resistors. Data acquisition, Excel, plotting. Linear regression (trend line), slope, intercept.
resistive circuits (resistor networks)	Many things from the physics department Excel required	Series and parallel combination of two unknown resistors. Measure I(V) relationship in both cases, extract effective resistance (slope) for each case. After processing data, they have two equations, two unknowns
Planck's constant determination	Many things from the physics department Excel required	Diffraction gratings to measure emission wavelength of LEDs. Analyze non-linear ("exponential") current-voltage curve to determine threshold voltage for light emission. Repeat for several LEDs, estimate Planck's constant and error in measurement.
RC circuits	Many things from the physics department Excel required	Charging and discharging of a series RC circuit with an unknown capacitor. Fit the exponential / logarithmic behavior to determine C.
mutual inductance / wireless power	Many things from the physics department Excel required	Time-varying current in one coil can wirelessly power a second coil determine the dependence on spatial separation of the two coils and relative angle between their axes. Linearization of annoying functions

Lab	Things	The Idea
homopolar motors	wire, D battery, wood screw, small magnet, paper. No computers	Discovery-driven: construct a simple homopolar motor from a battery, wire, a small magnet, and a wood screw. How does the direction of rotation depend on the orientation of current and magnetic field?
remote controls	Many things from the physics department Excel required	LED and photodetector. Drive the LED with a time-varying waveform and observe the photodetector response. Even when LED is not visibly changing in intensity by eye, changes are easily observed in the photodetector voltage. Lock-in techniques, digital communications. With everything else fixed, how does the photodetector signal depend on the distance from the source?