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This report is a short guide to the transport measurements and equipment used in the LeClair laboratory
at the University of Alabama, located in Bevill 180. The goal is to give the reader a basic understanding of
the most common measurements performed, and a somewhat detailed overview of the equipment. Some
general guidelines are also given for performing good transport measurements.

1 Electrical Resistivity

In order to understand the subtleties of the probe techniques used to measure the resistivity in this
laboratory, it is useful to very quickly review a simple classical model of conduction in metals and semi-
conductors. If you are familiar with the concepts of mobility, carrier concentration, and resistivity, you
may proceed to Sec. 3.

1.1 Electric Current

First, we will consider a homogeneous conductor, whose primary conduction is by electrons, and later
we will generalize our results to the case of semiconductors with both electron and hole conduction. If
we take a cross section of a conductor, such as a circular wire, an electric current is said to exist if there
is a net flow of charge through this surface. The amount of current is simply the rate at which charge is
flowing, the number of charges per unit time that traverse the cross-section. Strictly speaking, we try to
choose the cross-sections for defining charge flow such that the charges flow perpendicular to that surface.
Current is a flux of charge through a wire in the same way that water flow is a flux of water through
a pipe. Qualitatively, this is a reasonable way to think about electric circuits – current always has to
flow somewhere, and you don’t want an open connection any more than you would want an open-ended
water pipe. Voltage is more like pressure – you can have a voltage even when nothing is flowing, it just
means there is the potential for flow.

If a net amount of charge ∆Q flows perpendicularly through a particular surface of area A within a time
interval ∆t, we define the electric current to be simply the rate at which charge passes that surface:

I ≡ dQ

dt
(1)

In other words, current is charge flow per unit time. We should get one thing out of the way right off
the bat: the definition for the current direction is somewhat confusing. The historical definition is that
current flow is defined as the direction that positive charges would be moving. Of course, at this
point we know that usually it is really electrons doing all the moving, but the definition of electric current
has held fast.



1.1.1 Getting Current to Flow

Current in real conductors is due to the (net) motion of microscopic charge carriers. How much current
flows depends on the average speed of these charge carriers, the number of charge carriers per unit volume
(the density of charge carriers), and how much charge is carried by each. But how do we get charges to
flow through a conductor in the first place?

In order to get a net flow of charges, we need to provide a potential difference (voltage!i The presence
of a voltage gives rise to an electric field across the conductor, which in turn causes an electric force,
which accelerates the charges. The effectiveness of a potential difference to cause a current depends on
the density of charge carriers, their average speed, and microscopic properties of the conductor itself.

The free charges in conductors are extremely numerous and fairly mobile. Inside a normal conductor,
like copper, there is a fantastic density of charge carriers, ∼ 1022 electrons per cm3! So many, in fact,
that they continuously scatter off of each other and the fixed atoms in the conductor (about once every
10−14 sec or so, even in a good conductor!). Typical drift speeds in copper are ∼ 10−3 −10−4 m/s for
moderate electric fields, compared to the speed of random thermal electron motion of ∼ 105 m/s. Any
particular charge carrier has a hard time getting anywhere. Even though the charges are mobile, and able
to move at fantastic speeds, the time it takes to actually get anywhere is quite a bit longer than expected.
A bit like pachinko.

One result of all these collisions is that the carriers in, e.g., copper, cover huge distances in any given time
interval but have a very small displacement – most of their movement is wasted, and they end up close to
where they started out, so their net velocity is very small. Even when we apply a potential difference, the
net flow of charges is more sluggish than we might expect, due to all these collisions. The net velocity of
charge flowii we call the drift velocity, vd. In normal conductors, like copper, this drift velocity is more
or less proportional to the voltage applied, a point which we will explore in depth presently.

1.2 Drift Velocity and Current

Our conceptual physical picture of current in conductors is basically complete. A voltage induces an
electric field, which gives the carriers a net velocity in one direction, which is an electric current. This
drift motion along the electric field is superimposed upon the random thermal motion of the charge car-
riers (just like the random thermal motion in an ideal gas). From here, all we need to do is apply our
knowledge of electric forces and fields and kinematics to come up with a relationship between current,
field, and voltage.

iFrom now on, we will interchangeably use the phrases “potential difference” and “voltage.” From our point of view, they
are the same thing.

iiDistinct from and not to be confused with the random thermal motion, see below.



So first: given a drift velocity vd, through a conductor of cross section A, what is the current? The
number of charges that flow through our cross section A in the time dt is just the free charge which is
physically close enough to reach the surface A within that time. Those charges close enough must cover
the distance dx in the time dt. Since the average speed of the carriers is vd, then we must have dx=vddt.
This is illustrated schematically in Figure 1.

q

vd ∆t

vd

∆x

A

Figure 1: A small piece of a conductor of cross-sectional area A. The
charge carriers move with a speed vd, and are displaced by dx =
vddt in a time interval dt. The number of carriers in a section of
length dx is, on average, nAvddt, where n is the density of the
charge carriers.

The number of charges which cross the surface A, those close enough to reach it in a time dt, is just the
number contained within the volume A · dx, or Avddt. A bit more mathematically, we can write this:

number of charge carriers ≡ N = charge density× volume (2)

= charge density× area× distance covered in timedt (3)

= nAdx = nAvddt (4)

Here we have used n to represent the number of charges per unit volume, the carrier density. The total
amount of charge is the number of charge carriers times how much charge each one carries, which we’ll
call q. The current then is just the total amount of charge, Nq divided by the total amount of time, dt:

I =
dQ

dt
=

Nq

dt
=

nqAvddt

dt
= nqAvd (5)

We can see that the drift velocity and resulting current are larger when the carriers carry more charge q,
or when their mass is small. However, it would be nice to have expressions that didn’t directly involve the
cross-sectional area of the conductor, so we can calculate general properties independent of any particular
conductor shape or size. For this reason, it is common to introduce current density, J, which is just the
current per unit area. Rewriting Eq. 5 in terms of current density, we come up with a simpler and more
general expression:

J ≡ I

A
= nqvd (6)



Now we can calculate the current density for any given material of arbitrary geometry, and later specify a
cross-sectional area to determine absolute currents.

1.3 Resistance and Ohm’s Law

From Equation 5, we saw that the current through a conductor can be expected to scale with the drift
velocity. You might expect that the effect of increasing the applied voltage across a conductor ∆V is to
increase the drift velocity. This is basically true, but justifying that statement will require a few more
steps.

More accurately, the presence of a potential difference between two points on the conductor means that
those two points are at different potential energies. Recall that negative charges want to move from
regions of lower potential to regions of higher potential. In a conductor, even when a current flows, the
charges like to spread out as evenly as possible. This even and moving distribution of charge gives rise to
a uniform electric field. If the potential difference ∆V is applied over some distance l, and the electric field
is uniform, we know that the electric field along the length of the conductor must be given by:

E =
∆V

l
(7)

The presence of the electric field causes an acceleration of the charge carriers:

a =
Fe

m
=

q

m
E (8)

Thus the acceleration of the charge carriers depends only on the electric field and their charge-mass ratio,
q/m, about 1.76×1011 C/kg for electrons. In order to figure out how much current will flow for a given
potential difference, we need to find a way to take into account the dissipative effect of all the collisions
the carriers are constantly undergoing. In a sense, the collection of charge carriers is a bit like an ideal
gas, and our treatment here is reminiscent of an ideal gas law derivation. The analogy is a close one – the
innumerable electrons in a conductor are often called an electron gas.

1.3.1 Drift Velocity and Collisions

If we assume the charge carriers are electrons, of mass me (and charge −e), then each has an average
momentum p=mevd. We expect on average that each collision an electron experiences will completely
destroy all forward momentum – they are stopped cold by every single collision. This makes some sense,
since most of the collisions will be with the atoms making up the conductor, which are very heavy com-
pared to electrons, rather than with other electrons. If all forward momentum is destroyed, then the
electron is left with only its random thermal motion. If there were no electric force present to accelerate
the electrons, the random thermal motion of all the electrons will cancel out, and there is no net flow or



current.

We can easily find the thermal velocity of the carriers just like we do for an ideal gas – the thermal energy
of the electrons is 3

2kBT , where kB is Boltzmann’s constant, and we equate this to the carriers’ kinetic
energy:

3
2
kBT =

1
2
mv2

th (9)

=⇒ vth =

√
3kBT

m
∼ 105 m/s (at 295 K) (10)

Here we use vth to specify the thermal velocity distinctly from the electric-field-induced drift velocity.
As it turns out, the thermal velocity typically greatly exceeds the drift velocity (by ten million times or
so!) – the acceleration of the carriers by the electric field induces only a tiny velocity compared to that
given by the random thermal motion of the carriers. Again, this is what leads to carriers covering huge
distances but having very small displacements. The overall motion is terribly chaotic, and even fairly large
electric fields only alter the carrier velocity in conductors by parts per million at best. Still, the random
thermal velocities do not contribute to the electric current,iii it is only the tiny field-induced drift velocity
that gives rise to electric current.

We should also keep in mind that the collisions the carriers undergo are not continuous, but happen
one after another with some average time between them τ.iv In that time interval, the electron loses its
momentum mevd due to a collision, and thereafter regains it due to the action of electric field present,
only to lose it again about τ seconds later. As stated above, the presence of the electric force Fe gives the
electron an acceleration a=Fe/me, which allows it to regain its former drift velocity. From kinematics,
we would expect a mean displacement vd≈aτ.v

The starting and stopping motion of the carriers gives us an average rate at which the electrons are
losing momentum due to the collisions and associated impulse forces. We can straightforwardly find this
momentum change as:

(
∆p

∆t

) ∣∣∣∣
loss

=
mevd

τ
(11)

Once the scattering event is over, the electron regains momentum through the action of the electric force
iiiThey do give rise to electrical noise, however.
ivFor Cu, we can estimate τ∼2× 10−14 s.
vDepending on the method of derivation, there may be a factor of 2 in this expression, but the physics is the same.



caused by the electric field. We can easily write down the momentum gained up until the next collision:

(
∆p

∆t

) ∣∣∣∣
gain

= Fe = qE = −eE (12)

Now, the total momentum loss has to equal the total momentum gain for there to be a steady state. If
this were not true, the momentum would quickly build up, and the whole wire would start to move! So
we must impose conservation of momentum:

(
∆p

∆t

) ∣∣∣∣
loss

=

(
∆p

∆t

) ∣∣∣∣
gain

(13)

mevd

τ
= −eEx (14)

vd =
−eτ

me
E (15)

Really, this is just an application of Newton’s laws – ∆p/∆t is a force, and the equations above are also
essentially a force balance between the electric force and the impulse force due to the collision. Now
we have an expression for the average drift velocity of electrons flowing along the wire, in terms of the
average time between carrier collisions:

vd =
−eτ

me
E (16)

The minus sign makes sense here, by the way. Since electrons are negatively charged, they move in the
opposite direction that the electric field lines point. It is also reassuring that the drift velocity increases as
τ increases, since more time between collisions means more time spent accelerating, and that in principle
lighter carriers would have a higher velocity since they are more easily accelerated. Finally, the propor-
tionality with the electric field is what we expect.

For typical metals, we can estimate drift velocities of about 5× 10−3 m/s for a moderate electric field of
1 V/m, about eight orders of magnitude below the thermal velocity! Really, the effect of the electric field is
quite negligible in one sense, though it has profound consequences.

1.3.2 Mean Free Path and Mobility

Instead of dealing with the mean time between collisions, we could just as easily have started with the
mean distance that electrons travel before undergoing a collision.vi This quantity is known as the mean
free path, λmfp, and it has essentially the same meaning as it does in the kinetic theory of gasses. The

viHere we do mean the distance covered between collisions, not the displacement



shorter the time between collisions, the smaller the mean free path, and vice versa. The mean time and
mean free path are easily related through kinematics:

λmfp = τ(vd + vth) ≈ τvth (17)

Here we are considering the total distance covered not just the net displacement, so we need to use the
total velocity, vd+vth. For the last relationship, we have made use of the fact that vth�vd. What this
means is that the mean distance (and mean time) between collisions does not really depend on the applied
electric field, but really only comes from the random thermal motion of the carriers.

The proportionality constant between drift velocity and electric field in Eq. 16 is commonly called the
carrier mobility, which is just what it sounds like. In this case, we write vd =µE, where µ is the mobility:

vd = µE with µ =
qτ

m
(18)

From the units of µ (m2/V·s) and E (N/C or V/m), we can see that mobility is a quantity that tells us how
far a charge is able to move per second per unit of electric field (V/m). Now we have a nice expression
for exactly what we mean by mobility, rather than just a vague notion.

1.3.3 Current, Electric Field, and Voltage

Plugging Eq. 16 into Eq. 6, we find the relationship between current density and electric field, Ohm’s
law:

J =
I

A
= nqvd = −ne

−eEτ

me
=

ne2τ

me
E ≡ 1

ρ
E (19)

In the end, it turns out that current density (or current) and electric field are simply proportional. We
could almost have guessed this in the first place, but now we have a formal relationship between the two,
and we even know the constant of proportionality. Typically, we define a new quantity ρ, the electrical
resistivity, which is the constant of proportionality between current density and electric field:vii

ρ =
me

ne2τ
=

1
neµ

=
1
σ

(20)

The conductivity σ is simply the inverse of the resistivity. Resistivity represents the effectiveness with
which a given electric field or potential difference causes a current to flow, and is a (strongly) material-

viiWe will use a slightly different rho character for resistivity, ρ, to distinguish it from the one we use for mass density, ρ.



dependent property – it is a measure of the resistance of a material to current flow. We see that the
resistivity gets larger when the time between electron collisions gets smaller, just as we would expect, and
it gets larger when we increase the density of free carriers. Similarly, resistivity an mobility are inversely
proportional. We can go further in our analysis by noting that the potential difference and electric field
are simply related in a conductor by E=∆V/l, which leads us to:

J =
I

A
=

1
ρ

∆V

l
or ∆V =

ρl

A
I = ρlJ (21)

In other words, we find J ∝ I ∝ ∆V – the current flow in a conductor is proportional to the magnitude
of the applied voltage, and the amount of current one gets for a particular applied voltage depends on
the conductor’s resistivity and geometry. We can make this simpler by introducing a new constant of
proportionality R = ρl

A . This, along with the definition of current density (J = I/A), will allow us to
relate I and ∆V directly. This new constant of proportionality R between I and ∆V is known as the
resistance of the conductor, and it allows us to connect ∆V and I in the traditional form known as
Ohm’sviii law:

∆V = IR or I =
∆V

R
or R =

∆V

I
(22)

1.4 Transport in Semiconductors

The primary difference between metals and semiconductors, from our point of view, is that semiconduc-
tors can have electrical conduction by both electrons and holes.ix In practical semiconducting devices, the
carrier concentrations are such that the approximation of a small drift velocity compared the the thermal
velocity holds, and our model of collision-dominated conduction above well-describes both electron and
hole motion.

We can consider the electron and hole contributions to the conductivity separately. If an electron meets a
hole in the semiconductor, the electron will simply annihilate the hole (i.e., occupy the empty state that
the hole represents), and neither will contribute to conduction. For this reason, we may consider the two
channels of conductivity to be essentially non-interacting (other than the presence of one influencing the
mean scattering time of the other), and treat them as two parallel conductors within the same material.
We can then add the electron and hole resistivities in the same fashion that we add resistors in parallel,
since the geometrical factors relating resistivity to resistance are the same for both. That is, we add the

viiiAfter Georg Simon Ohm (1789–1854) a German physicist who first found the relationship between current, voltage, and
resistance.

ixA “hole” is the conceptual opposite of an electron, and describes the lack of an electron at a position where one could exist.
It is not the same as a positron.



resistivities inversely (or simply add the conductivities). If we denote the electron density and mobility
as n and µn, and the hole density and mobility as p and µp, this leads to a total resistivity ρtot

1
ρtot

=
1

ρn
+

1
ρp

= neµn + peµp (23)

ρtot =
1

neµn + peµp
(24)

If one species of carrier dominates the conductivity – either by sheer numbers or by a vastly larger mobil-
ity – the expression reduces to that of a normal conductor above, which is the situation we will encounter.
Which type of carrier is dominant cannot be determined by a simple resistivity measurement, being in-
sensitive to the sign of the charge carrier. The Hall effect, discussed below, can make this determination.
If we simply measure the resistivity of a semiconductor without regard to whether both charge carriers
play a significant role or not, we can extract an effective mobility µeff and carrier concentration N:

ρtot ≡
1

Neµeff
(25)

Nµeff ≡ nµn + pµp (26)

For a doped semiconductor, one can show that the product np is constant, np = n2
i where ni is the

intrinsic carrier concentration. Without doping, the carrier concentrations must be equal, and n=p=ni.
Except for very high carrier densities, approaching that of a metal, n and p are highly temperature-
dependent, increasing as temperature increases. This is due to the fact that in a lightly-doped semicon-
ductor the concentration of free carriers of either type is strongly determined by thermal activation. The
mobility shows a strong temperature dependence as well, with mobility decreasing strongly as tempera-
ture increases. For pure silicon, ni≈1.5× 1010 cm−3 at 300 K, about 12 orders of magnitude below that
of copper. Doped silicon can have ni≈ 1013−1018 cm−3, above ni≈ 1018 cm−3, one usually considers
the semiconductor so highly doped that it is for all intents and purposes a metal.

2 Measuring resistive devices

2.1 Sourcing Voltage

A current can only be maintained in a closed circuit by a source of electrical energy. The simplest way
to generate a current in a circuit is to use a voltage source, such as a battery. A voltage source essentially
raises or lowers the potential energy of charges that pass through it. The amount of energy gained per
charge that passes through a device is the potential difference that the voltage supplies, ∆V , measured
in Joules per Coulomb (J/C), i.e., Volts (V). Though voltage is strictly an energy per unit charge, it is
often useful to think of a voltage as a “pressure” of sorts, which tries to force charges through an electric



circuit. Just like hydrostatic pressure, the presence of a voltage does not necessarily lead to a current, this
only occurs when a completed circuit is present. In this way of thinking, a voltage source is a sort of
generalized power supply which can be thought of as a “charge pump” that tries to force charges to move
within an electric field inside the source. Many batteries, for instance, are “electron pumps” in which
negatively charged electrons move opposite to the direction of the electric field. In an idealized voltage
source, the output terminals provide a constant potential difference ∆V , and can pump any amount of
charge through any closed circuit connected to the output terminals.

Figure 2: A real voltage source provides a voltage ∆V , but has
an internal resistance r. The actual output voltage developed at
its terminals depends on r and the resistance of the external circuit
connected to the battery.

Real voltage sources, however, always have internal resistances, resulting in parasitic voltage losses within
the source itself, and they have power limits which restrict the amount of current that can be sourced.
In general, we can model a real voltage source as an ideal voltage source ∆V in series with an internal
resistance r, as illustrated in Figure 2. The effect of the internal resistance is clear: as soon as an external
load is connected to the voltage source and a current flows, the voltage at the battery terminals is always
less than that of the ideal internal source. The only way to realize the ideal voltage of a source is if it
drives no current – hardly useful for our purposes.

As a concrete example, consider the circuit in Figure 3, a voltage source ∆V with internal resistance r

connected to an external resistor R.x If we neglect the internal resistance of the battery, the potential
difference across the battery terminals is ∆V .

Figure 3: A voltage source ∆V with internal resistance r con-
nected to an external resistor (load) R.

Once the external (load) resistance R is connected to the source, a single current I is produced in this
xWe are assuming, for now, that wires connecting to the source have no resistance.



single-loop circuit. Conservation of energy (a.k.a. Kirchhoff’s voltage law) requires the sum of potential
differences around the entire circuit be zero:

0 = ∆V − Ir − IR (27)

Thus, the voltage delivered to the external load resistance R is only

∆Vload = ∆V − Ir = IR = ∆V
R

r + R
(28)

This makes it clear that the voltage across the load is the same as the ideal voltage ∆V only when the
current is zero. This is why another name for the rated voltage is the open-circuit voltage – rated and
actual voltages are only the same for a real voltage source when nothing is connected and no current
flows. For completeness, given a load resistance R, internal resistance r, and an ideal open-circuit source
voltage ∆V , we can also determine the current:

I =
∆V

R + r
(29)

Clearly, the current delivered by the battery through the resistor depends on both the resistor’s value and
the internal resistance of the battery. If R � r, of course we need not worry about the internal resistance
of the battery, and this is the regime we prefer to operate in. In a nutshell: voltages sources like high load
resistances, compared to their internal resistance. xi

2.2 Sourcing Current

A current source is nothing more than a device that delivers and absorbs a constant current, sourcing and
sinking a constant number of charges per unit time. An ideal current source (which exists only on paper)
delivers a constant current to any closed circuit connected to its output terminals, no matter what the
voltage or load resistance. Though a battery provides a simple example of a voltage source, there is no
correspondingly simple realization of a current source.

Circuit diagram symbol for a current source: ����
I

We can approximate a current source, however, with a single battery and resistor. In the circuit of Fig. 4,
a battery with internal resistance connected to a load resistor, the current through the load is given by
Eq. 29. If we make the load resistor very small (or equivalently, make the internal resistance of the battery
very large), r � Rload, then the current through the load resistor is I≈∆V/r. This does provide a roughly
constant current, but the power loss in the internal resistor will be severe, and it is generally impractical

xiGood laboratory voltage sources can have internal resistances well below 1Ω.



to construct a current source in this way (that is not to say that it is not very commonly done anyway,
however).
How more realistic constant current sources work internally is a bit beyond the scope of our discussion.
However, that does not prevent us from seeing how they behave when connected to a circuit. In the same
way that a real voltage source can be considered an ideal voltage source in series with a resistor, a real
current source can be considered an ideal current source in parallel with a resistor, as shown in Fig. 4.

Figure 4: A real current source can be considered as an ideal cur-
rent source in parallel with an internal resistance r. The internal
resistance “steals” some of the current, depending on the value of the
load resistor.

If the internal resistance is very large, almost all of the current goes through the load, and the current
source is nearly ideal. If the load resistance becomes comparable to the internal resistance, however,
a significant portion of the current takes the “parasitic” path (Ip in the figure) through the internal
resistance, and the source is no longer close to ideal. The current through the load resistance is easily
calculated using charge and energy conservation (a.k.a., Kirchhoff’s current and voltage laws):

Iload = I
r

r + R
(30)

The current through the load is independent of the load resistance R and nearly equal to the source
current I when r � Rload. In other words, current sources want low load resistances, in contrast to
voltage sources. This brings up one answer to a common question: is it better to source current or
voltage? If the load you are trying to source has a large resistance, as might be the case for a tunneling
device, sourcing voltage is generally better. If the load is small, as is usually the case for all-metal GMR
devices, sourcing current is generally better.xii

2.3 Measuring Voltage

A voltmeter is just what it sounds like – a device that measures voltage, or potential difference, between
two points. A typical voltmeter has two input terminals, and one connects wires from these input

xiiFor sources, internal resistance is often called “output resistance.” Good laboratory current sources can have internal
resistances above 1014 Ω, while good laboratory voltage sources can have internal resistances well below 1Ω, so with good
equipment either I or ∆V can usually be sourced for most common measurements without issues. Noise is often what actually
determines which is used, but even so, the rule of thumb is still useful.



terminals to the points within a circuit between which one wants to know the potential difference. If
we wish to measure the potential difference across a particular component in a circuit, we connect the
voltmeter in parallel with that component.

Circuit diagram symbol for a voltmeter: ����
V

Of course, the idea is to measure the potential difference while disturbing the circuit as little as possible.
For this reason, voltmeters have very high internal resistances, such that their current draw is negligible,
as shown in Fig. 5. An ideal voltmeter probes the potential difference between its inputs, but since no
current flows through it, it does not affect the circuit. Thus, an ideal voltmeter should be connected in
parallel with the device to be measured.

Figure 5: (a) An ideal voltmeter has an infinite internal resistance, and no current flows through it. Hence, it measures the true voltage drop across
the resistor, ∆V = IR. (b) A real voltmeter has a finite internal resistance r, and forms a voltage divider with the load resistor. Some current flows
through the voltmeter itself if Rload is comparable to r, and the measured voltage is less than the true voltage on the resistor.

Real voltmeters have a finite internal resistance, and their current draw is not zero What the voltmeter
really measures then is not just the load, but the equivalent resistance of the load in parallel with its own
internal resistance r. Put another way, the voltmeter forms a current divider with the load, and “shunts”
part of the current through the load. The voltmeter shunting part of the current obviously leads to
inaccurate results, and the measured voltage drop across the resistor is no longer IRload like we expect.
If we assume there is a current I in the wire leading to the resistor, we can readily calculate the voltage
measured by the voltmeter:

∆Vmeasured = IReq =
rRload

r + Rload
I =

IRload

1 + Rload
r

=
∆Vexpected

1 + Rload
r

(31)

The ratio between the measured voltage and the expected value is 1/(1 + Rload/r), which tells us two
things. First, the measured value is always smaller than the true value, since 1/(1 + Rload) 6 1. Second,



so long as the load resistor is small compared to the internal resistance of the meter, Rload � r, the
measured and expected values will be very close. Given the enormous internal resistance of most modern
voltmeters, this is usually the case, but one must still exercise caution. Using a meter with insufficient
internal resistance is known as “measuring the meter,” and is something you will encounter in your
laboratory experiments.xiii

2.4 Measuring Current

An ammeter is the device that measures current, and it behaves rather differently than a voltmeter. Mea-
suring the flow of charge has similarities with measuring the flow of fluids. A flow meter measures fluid
flow by allowing the fluid of interest to pass through it. Similarly, an ammeter measures charge flow by
allowing current to pass through it. Ammeters therefore connect in series with the device to be measured,
but one should be aware that real ammeters have an internal resistance which is thus introduced in series
with the load. Ammeters typically have tiny internal resistances compared to the devices of interest, and
current flows readily through them. If an ammeter is connected incorrectly in parallel with the load, it
will create current divider (parallel resistor network) with the load resistor. The small internal resistance
of the ammeter can shunt most of the current from the load resistor, and an improper measurement
results. Since the ammeter resistance is small, it can be connected in series with the load, and the voltage
drop across the ammeter is usually negligible – it measures the current without disturbing the circuit.

Circuit diagram symbol for an ammeter: ����
A

Figure 6: A real ammeter measures current passing
through it, but introduces a series resistance r, creat-
ing an additional voltage burden on the source.

A simple ammeter can be constructed using a precise resistor and a good voltmeter, as shown in Fig. 7.
A precise resistor placed in series with the device to be measured (in place of the ammeter in Fig. 6, for
instance), and a voltmeter measures the voltage drop across this precise resistor.

xiiiGood laboratory voltmeters can have internal resistances on the order 1010 Ω or more. For meters, internal resistance is
often called “input resistance.”



Figure 7: A simple ammeter can be constructed from a precise resis-
tor and a good voltmeter. Since the value of the resistance is known,
the measured voltage drop across it yields the current.

Since the value of the resistor is known precisely, the measured voltage drop across it yields the current
via Ohm’s law:

I =
∆Vmeasured

Rprecise
(32)

In this way currents can be measured reasonably accurately, but this is far from an ideal ammeter. First,
this technique of current measurement brings in all the non-idealities associated with real voltmeters as
discussed above. Second, placing a resistor within the circuit of interest introduces an additional voltage
drop, which can affect other components. Care must be exercised when using this technique. The precise
resistor can be chosen carefully as not to introduce a sufficiently large voltage drop to alter the circuit
too much, the voltages on other components in the circuit must be independently measured to take this
effect into account, or the circuit must be designed from scratch to account for this additional voltage
drop. More accurate instruments, such as current preamplifiers, allow far more precise measurements
with very low internal resistances. While their internal complexity is beyond the scope of the current
discussion, they are in principle used just as as the ammeters discussed above.xiv

Finally, we leave you with a few more rules of thumb: voltmeters have a high internal resistance and
connect in parallel with the device to be measured; ammeters have a low internal resistance and connect
in series with the device to be measured.

3 Four point probe techniques

Armed with a knowledge of quasi-realistic devices and instruments, we are ready to discuss the most basic
and essential task: measuring the resistivity of a specimen, such as a homogenous wire, a thin or thick
film, or a “bulk” sample. Resistivity is of primary interest since it is a geometry-independent quantity,
characteristic of a given material and its processing. However, resistivity must be determined from a
geometry-dependent resistance measurement. Thus, in order to determine resistivity we must account

xivGood laboratory current preamplifiers can have internal resistances far less than 1Ω, depending on the level of current
being measured.



for the specimen and measurement geometry.

We will assume in the following discussion that the necessary precautions have been taken with regard
to instrumentation, and that all sources and meters can be considered essentially ideal.xv Given a homo-
geneous conducting sample of one (wire), two (film), or three (thick film or bulk) dimensions, a primary
quantity of interest is the resistivity ρ (or the conductivity σ=1/ρ).

3.1 Four-point Probe Measurements

Resistivity measurements are commonly performed in a linear four-point geometry using current sourc-
ing, as shown in Fig. 8. In this arrangement, the sample of interest is contacted by four collinear probes
of negligible size compared to any sample dimension. The outer two probes introduce a current I, while
the inner two probes measure a potential difference ∆V . It is clear that this arrangement will not be sub-
ject to artifacts due to finite wire and contact resistances as discussed in the Appendices. If the voltmeter
measuring potential difference ∆V is nearly ideal (i.e., the sample resistance between points V+ and V−

is small compared to its internal resistance), the current drawn by the voltmeter is essentially zero. Thus,
the potential difference measured is characteristic of the specimen only. From the measured potential
difference and the known source current, the resistivity of the sample may be determined from by ge-
ometric considerations. We need only determine for various sample geometries how the current flows
outward from a source probe and the resulting potential difference at the inner probes, superposition and
symmetry will do the rest.

Figure 8: Linear four-point-probe measurement. Current is
introduced with the outer probes, and potential difference is
measured between the inner probes.

It is simplest to start by considering a current I introduced into an infinite bulk specimen of constant
resistivity ρ through a single probe somewhere in the interior. Charge conservation dictates that the total
current through a sphere of radius r centered on the probe must be constant, and thus the current density

xvFinite wire and contact resistances remain, however, necessitating a four-terminal measurement; see Appendix 3.



a distance r from the probe must be

J(r) =
I

4πr2
(33)

If the conductor obeys Ohm’s law, we must have

J(r) =
1
ρ
E = −

1
ρ
∇V (34)

The potential (relative to a distant point) due to this current a distance r from the source point then
follows readily since the problem is radially symmetric and the current density is constant at a given
radius r:

J(r) =
I

A(r)
=

I

4πr2
= −

1
ρ

∂V

∂r
(35)

V(r) =
Iρ

4πr
(36)

3.2 Bulk samples

Next, we consider a “half-infinite” bulk specimen with one free surface, Fig. 9, where the current is
injected through a single probe I+. Assuming current still spreads out uniformly, it is now confined
entirely in one hemisphere, doubling the current density at an arbitrary point r and therefore doubling
the potential:

J(r) =
I

2πr2
(37)

V(r) =
Iρ

2πr
(38)

In the four-point probe measurement, the potential difference of interest is measured with probes V+ and
V−, at distances a and a + b from the source probe, respectively. The potentials at the probes due to the
current injected at I+ are now easily found:

V+ =
Iρ

2πa
due to I+ (39)

V− =
Iρ

2π (a + b)
due to I+ (40)

Of course, this is not the whole story: we have a second current probe I−, our current “sink," which we



Figure 9: Linear four-point-probe measurement on a bulk
sample. The outer and inner probes are separated by a dis-
tance a, while the inner probes are separated by b. Current
is introduced by the outer probes, and potential difference
measured on the inner probes.

must take into account. By symmetry, the result is the same as above if + and − are interchanged and the
sign of the current reversed. The total potential difference between the voltage probes V+ and V− due
to a current through both probes I+ and I− follows by superposition, or simply doubling the potential
difference due to the single current probe I+:

∆V = V+ − V− =
Iρ

π

(
1
a

−
1

a + b

)
=

Iρb

πa (a + b)
(41)

This can be readily inverted to determine the resistivity ρ in terms of the measured potential difference
and known current and probe spacing:

ρ =
πa (a + b) ∆V

bI
(42)

For the special (but common) case of equally spaced probes (a = b), we have

ρ =
2πa∆V

I
(43)

3.3 Thin Films

More relevant for spintronics is the case of a thin film specimen, Fig. 10. Specifically, an infinite two-
dimensional sheet whose thickness is small compared to the probe spacing, such that we may approximate
the current density as uniform in the direction perpendicular to the film plane. In this case, the current
no longer spreads evenly in a hemisphere, but is confined within the film’s thickness d. In the plane of
the film, the current spreads evenly leading to circular equipotential surfaces. The crucial difference is
that at a lateral distance r from a current probe the total current I must pass through an area dictated by



the circumference a circle of radius r and the film thickness, and thus the current density is

J(r) =
I

2πrd
(44)

Figure 10: Linear four-point-probe measurement on a thin
film sample of thickness d. The outer and inner probes are
separated by a distance a, while the inner probes are sepa-
rated by b, {a,b} � d. Current is introduced by the
outer probes, and potential difference measured on the inner
probes.

The potential at a distance r is then

V(r) =
ρ

2πd
ln r (45)

Following similar reasoning as above, the potential difference between the voltage probes is

∆V =
ρ

πd
ln

(
a + b

a

)
(46)

Which gives the resistivity of the film as

ρ =
π∆Vd

I

1
ln

(
a+b

a

) (47)

With equally spaced probes (b = a),

ρ =
π∆Vd

I ln 2
≈ 4.53

∆V

I
(48)

We note in passing that for thin film specimens, it is common to quote a sheet resistivity, ρs = ρ/d,
the resistivity per unit thickness, as well as a sheet resistance Rs, the resistance per unit thickness. For
equally-spaced probes the, sheet resistivity is ρs = π∆Vd/I ln 2.



3.4 Wires

Finally, in the one-dimensional case we consider a wire of sufficiently small cross-sectional area A that
the current may be considered uniform along the radial direction of the wire. That is, we consider a wire
whose radial dimensions are smaller than any of the contact spacings or dimensions, Fig. 11. In this case,
the current spreads uniformly throughout the wire’s cross section, and the current density is constant
throughout, J = I/A. At a distance z from a current probe, the potential is

V(z) = ρJz =
ρIz

A
(49)

and thus the potential difference between the voltage probes is

∆V =
ρIb

A
(50)

In the one-dimensional case, the key result is that the potential difference is independent of the spacing
of the current probes a. From this the resistivity is also independent of a, and is determined by

ρ =
∆VA

Ib
(51)

As expected, in one dimension, we simply recover the usual expression for a uniform current density.

Figure 11: Linear four-point-probe measurement on a nar-
row wire sample of cross-sectional area A. The outer and
inner probes are separated by a distance a, while the inner
probes are separated by b, {a,b}�

√
A. Current is intro-

duced by the outer probes, and potential difference measured
on the inner probes.

3.5 The van der Pauw Technique

Though the resistivity determinations above are perfectly sensible, they are limited by their rather strict
measurement geometry. In 1958, L.J. van der Pauw proposed a technique for measuring the resistivity of
thin samples of arbitrary shapes. Due to its convenience, it is commonly used technique to measure the
sheet resistance of a material. It can also be used to measure the Hall effect, which means sheet resistance,
carrier type (electron or hole), carrier density, and carrier mobility can all be determined from a single



set of resistance measurements (with the addition of a magnetic field for the Hall effect).

Though the full derivation of this technique is somewhat beyond the scope of this lab manual, van
der Pauw’s original papers on the subject are quite readable, and easily found online.xvi As originally
devised by van der Pauw, one uses an arbitrarily-shaped (but simply connected, i.e., without holes), thin
plate sample of thickness d containing four very small contacts placed on the periphery of the plate. A
schematic of a quasi-rectangular configuration is shown below in Fig. 12.

1

2

3

4

Figure 12: Contact configuration for a van der Pauw measurement.

The objective of the measurement is to determine the sheet resistance Rs = ρ/d. Using conformal
mapping techniques related to the analysis above, van der Pauw demonstrated that two characteristic
resistances Ra and Rb are sufficient to determine the sheet resistance through the following equation:

e−πRa/Rs + e−πRb/Rs = 1 (52)

which can be numerically solved for Rs. If the thickness of the specimen d is known, ρ may be calculated.
The two characteristic resistances are obtained from the configuration above in the following manner:

Ra =
V43

I12
=

voltage between contacts 4 and 3
current applied through contact 1 and out of contact 2

(53)

Rb =
V14

I23
=

voltage between contacts 1 and 4
current applied through contact 2 and out of contact 3

(54)

Specifically, one first sources a current I12 from contact 1 to contact 2, and measures the voltage devel-
oped V43 between contacts 4 and 3. The ratio V43/I12 is the characteristic resistance Ra. Subsequently,
sourcing a current I23 from contact 2 to contact 3 and measuring the voltage V14 between contacts 1 and

xviSee Philips Technical Review, vol. 20, pp. 220-224, (1958) and Philips Research Reports, vol. 13, pp. 1-9, (1958). These
articles are available on the course web site in the templates directory.



4 yields the characteristic resistance Rb. In the rectangular configuration, this amounts to measuring a
single resistance and then rotating the contacts by 90◦, as shown in Fig. 13

Figure 13: Contact configuration for a van der Pauw measurement showing the determination of the two characteristic resistances Ra and Rb.
From http: // www. eeel. nist. gov/ 812/ hall. html .

In order to use the van der Pauw method, the sample thickness must be much less than the width and
length of the sample. In order to reduce errors in the calculations, it is preferable that the sample is
symmetrical. There must also be no isolated holes within the sample. Further, the contacts must be on
the boundary of the sample (or as close to it as possible). Strictly, the contacts must be infinitely small.
Practically, they must be as small as possible; any errors given by their non-zero size will be of the order
D/L, where D is the average diameter of the contact and L is the distance between the contacts.

In addition to this, any leads from the contacts should be constructed from the same batch of wire to
minimize thermoelectric effects. For the same reason, all four contacts should be of the same material.

4 Solving the van der Pauw equations numerically

NIST has published a relatively simple method for accurately solving the van der Pauw equation for sheet
resistance Rs =ρ/d, given the two appropriate van der Pauw resistance measurements. Below, we briefly
reproduce their algorithm.xvii

xviiThe box below is reproduced from http://www.eeel.nist.gov/812/samp.htm

http://www.eeel.nist.gov/812/hall.html
http://www.eeel.nist.gov/812/samp.htm


The sheet resistance Rs can be obtained from the two measured characteristic resistances RA

and RB by numerically solving the van der Pauw equation:

e−πRA/Rs + e−πRB/Rs = 1 (55)

using the following iterative routine:

• Set the error limit δ=0.0005, corresponding to 0.05%.

• Calculate the initial value of zi, or

zo =
2 ln 2

π(RA + RB)

• Calculate the ith iteration of

yi =
1

exp (πzi−1RA)
+

1
exp (πzi−1RB)

• Calculate the ith iteration of zi, where

zi = zi−1 −
(1 − yi) /π

RA/ exp (πzi−1RA) + RB/ exp (πzi−1RA)

• When (zi−zi−1)/zi is less than δ, stop and calculate the sheet resistance Rs =1/zi

• The resistivity ρ is given by ρ=Rsd, where d is the thickness of the conducting layer.

What follows is a very basic C program that can be used to solve for the sheet resistance, given the two
appropriate resistances from a van der Pauw measurement. This file should be available for download on
the course web site.
// F o l l o w s t h e NIST a l g o r i g t h m from h t t p : / /www. e e e l . n i s t . gov /812/ samp . htm

# inc lude <s t d l i b . h>
# inc lude <s t d i o . h>
# inc lude <math . h>

# de f ine PI 3 . 1 4 1 5 9

f l o a t y_ i ( f l o a t z_prev , f l o a t Ra , f l o a t Rb ) ;
f l o a t z _ i ( f l o a t z_prev , f l o a t y , f l o a t Ra , f l o a t Rb ) ;
f l o a t z_o ( f l o a t Ra , f l o a t Rb ) ;
f l o a t van_der_pauw ( f l o a t Ra , f l o a t Rb ) ;

i n t main ( i n t argc , const char ∗ a rgv [ ] ) {

f l o a t Ra , Rb , Rs ;



i f ( a rgc <=2) {
f p r i n t f ( s tdout , " Usage : ’ van_der_pauw Ra Rb ’ \n Returns : Rs = rho / d\ nAll u n i t s : Ohms\n" ) ;
return ( −1) ;

}

Ra = a t o f ( a rgv [ 1 ] ) ;
Rb = a t o f ( a rgv [ 2 ] ) ;
f p r i n t f ( s tdout , "Ra=%g \ t Rb=%g\n\n" , Ra , Rb ) ;
Rs = van_der_pauw ( Ra , Rb ) ;
f p r i n t f ( s tdout , " S h e e t R e s i s t a n c e ( rho / d ) Rs=%g \n" , Rs ) ;

return ( 0 ) ;

}

f l o a t van_der_pauw ( f l o a t Ra , f l o a t Rb )
{

f l o a t Rs , e r r , y , z , z_prev ;
i n t count =0;
f l o a t TOL = 1E−8; /∗ how a c c u r a t e l y you want t o s o l v e ! ∗/

z_prev = z_o ( Ra , Rb ) ;
z=z_prev ;

do {
y = y_i ( z_prev , Ra , Rb ) ;
z = z_prev − z _ i ( z_prev , y , Ra , Rb ) ;
e r r = f a b s ( ( z−z_prev ) / z ) ;
z_prev=z ;
count++;

} while ( e r r >= TOL ) ;

Rs = 1 . 0 / z ;

return ( Rs ) ;
}

f l o a t z_o ( f l o a t Ra , f l o a t Rb ) /∗ s t a r t i n g v a l u e f o r i t e r a t i o n ∗/
{

f l o a t z_o =0;
z_o = 2 . 0∗ l o g ( 2 . 0 ) / ( PI ∗ ( Ra + Rb ) ) ;
return ( z_o ) ;

}

f l o a t z _ i ( f l o a t z_prev , f l o a t y , f l o a t Ra , f l o a t Rb ) /∗ z _ i . . . c a l c u l a t e e a c h i t e r a t i o n ∗/
{

f l o a t z _ i =0;
z _ i = ( (1 .0 −y ) / PI ) / ( Ra/ exp ( PI∗ z_prev∗Ra ) + Rb/ exp ( PI∗ z_prev∗Rb ) ) ;
return ( z _ i ) ;

}

f l o a t y_ i ( f l o a t z_prev , f l o a t Ra , f l o a t Rb )
{

f l o a t y_ i =0;



y_ i = 1 . 0 / exp ( PI∗ z_prev∗Ra ) + 1 . 0 / exp ( PI∗ z_prev∗Rb ) ;
return ( y_ i ) ;

}

5 dI/dV and d2I/dV2 measurements

Many times our aim is to measure relatively small (. 1%) changes in transport as a function of bias, for
example, the slight increase in tunneling current when a vibrational mode in the tunnel barrier is excited.
Measuring an I(V) curve one might hope to see a small change in slope at the threshold energy, but
usually this is not the case. Looking at the slope of the I(V) curve is a much more accurate way to probe
small changes in transport. In principle, one can numerically differentiate the I(V) curve. However, this
is typically undesirable for several reasons, the most important being the rather low accuracy and noise
due to discretization. With some simple mathematics, though, it can be shown that dI/dV(V) can be
directly measured, with the addition of an ac modulation voltage and a lock-in amplifier.

5.1 Mathematical preliminaries

A typical I(V) measurement slowly ramps the applied dc voltage and measures the dc current through
the device of interest. For a derivative measurement, in addition to the dc voltage, we additionally add a
small, constant amplitude ac modulation voltage, i.e.,

Vtot = Vdc + δVac cos ωt

The current response we wish to measure is then the function

I(Vtot) = I(Vdc + δVac cos ωt) (56)

where I(Vdc) would be the current-voltage characteristic in the absence of the ac modulation voltage. If
we insist that the ac modulation amplitude be small compared to the dc voltages of interest, δVac�Vdc,
we may perform a Taylor expansion about Vdc:

I(Vdc + δVac cos ωt) = I(Vdc) +
dI

dV

∣∣∣∣
Vdc

δVac cos ωt +
1
2

d2I

dV2
(δVac)

2 cos2 ωt (57)

= I(Vdc) +
dI

dV

∣∣∣∣
Vdc

δVac cos ωt +
1
4

d2I

dV2
(δVac)

2 (1 + cos 2ωt) (58)

≈ I(Vdc) +
dI

dV

∣∣∣∣
Vdc

δVac cos ωt +
1
4

d2I

dV2
(δVac)

2 cos 2ωt (59)



for the last line, we used the power-reduction formula for cos and dropped terms of third order and higher
in modulation voltage. What we see now is that the response of the system to the applied dc voltage and
ac modulation has three characteristic features:

1. a dc response to the applied dc voltage I(Vdc)

2. an ac response at the frequency of the ac modulation dI
dV

∣∣
Vdc

δVac cos ωt

3. responses at the harmonics of the ac modulation

Measuring the dc current response as a function of the applied dc voltage thus reproduces the I(V)

characteristic, while measuring the ac current response at the frequency of the modulation voltage gives
a signal proportional to dI/dV . This allows us to measure dI/dV(V). For non-ohmic devices, measuring
the ac current response at the second harmonic (2ω) gives us a signal proportional to d2I/dV2.

5.2 Ohmic and non-ohmic devices

It is instructive to see what would result when performing this measurement on an ideal Ohmic resistor.
For a simple resistive device, I=V/R independent of frequency. In this case,

I(Vdc + δVac cos ωt) =
Vdc
R

+
δV

R
cos ωt (60)

(shorthand) I(V + dV cos ωt) = Idc + dIac cos ωt (61)

For convenience, we usually refer to the amplitude of the current response at the fundamental frequency
as simply dI, and the dc component of the current as simply I. Similarly, we will often call the dc com-
ponent of the applied voltage V and the amplitude of the ac modulation dV .

The ratio of the dc voltage to the dc component of the current for a resistive device gives us the resistance,
as does the ratio of the ac modulation voltage to the ac component of the current at the fundamental fre-
quency. More specifically, if we apply the ac modulation at frequency ω and measure the current at
the same frequency ω, the amplitude of the current signal will be δV/R as expected. For a typical mea-
surement, one sweeps the dc voltage V and maintains a constant ac modulation dV . The measured dc
response is I, and the measured response at the fundamental frequency is dI. Dividing the measured ac
response by the ac modulation then gives dI/dV , and dividing the measured dc response by the applied
dc voltage gives us R=V/I. For a simple resistive device, R independent of frequency and dc voltage, and
measuring dI/dV(V) should just give a constant horizontal line at dI/dV =1/R.

For a non-ohmic device, we have two additional concerns. First, dI/dV will now be a function of the
applied dc bias, since I(V) is no longer a simple linear relationship. Thus, the dI/dV(V) characteristic
will no longer be constant. Second, signals will now appear at harmonics of the modulation frequency



since it is unlikely that the higher derivatives (e.g., d2I/dV2) are zero everywhere. Measuring the current
response at 2ω while driving the system with a modulation voltage at ω thus gives a signal proportional
to d2I/dV2, and one can measure the nth derivative by measuring the current response at the nth har-
monic of the modulation frequency. This is of course in principle; the amplitude of the resulting signal
is reduced by a factor (δV)n/2n!, making measurements of even d2I/dV2 more often than not quite
challenging.

5.3 Circuitry

In order to accomplish the measurement described above, we need at minimum the following functions:

• dc voltage source

• dc current meter

• ac voltage source

• ac current meter

The first two are standard items, and present no problems. The third and fourth are most easily realized
with a lock-in amplifier and current to voltage converter. A modern lock-in amplifier essentially provides
a very stable ac voltage source and a phase-sensitive voltmeter synchronized to the same frequency. In
the simplest case, the voltage to current converter can simply be a precision resistor in series with the
device of interest – measuring the ac voltage across a known resistance in series allows one to determine
the current. A better solution is to use a current preamplifier, which acts as a current to voltage converter
without the burden of a large series resistance (often undesirable due to the extra noise introduced as well
as the burden placed on the voltage sources).

In addition to these basic functions, a few ancillary items also become necessary in most practical cases.

First, one cannot simply connect the ac and dc voltage sources together. This will lead to cross-talk and
increased noise, at least, and more often than not the ac source will simply not tolerate a dc voltage being
applied across its output terminals (or vice versa). One solution is to couple the ac voltage into the dc-
biased circuit with a transformer, but this can place serious restrictions on the available frequency range,
and lead to large and undesirable inductive pickup unless careful precautions are taken. A better solution
is to use an op-amp-based summing amplifier, with pre-amplifying stages to buffer the two sources from
one another. This is the solution we have chosen, the details of which are below. Second, if one wishes
to avoid measuring the lead and electrode resistances of the device, a four terminal measurement must
be performed. This means that the device voltage must be measured with two additional wires, since
the presence of any unwanted series resistances in the primary circuit will make the actual device voltage
smaller than the total output voltage. Finally, amplifiers are typically necessary for both ac and dc current



and voltage measurements, as the signals involved can be extremely small.

Figure 14 shows a basic block diagram of the system we have constructed, which contains all of the
elements above. At the far left, the dc and ac voltage sources feed into a home-built amplifier (see Fig. 15),
which contains pre-amplification and buffering stages followed by a unity-gain summing amplifier. The
output of this amplifier is the dc voltage plus ac modulation, which is applied across the device under test
in series with a current preamplifier. The current preamplifier outputs a voltage signal proportional to
the current passing through it, both the ac and dc current signals. This output is fed directly into a dc
voltmeter to measure the dc component of the current, and through an additional amplifier to a lock-in
amplifier to measure the ac component of the current. With two separate wires, the device’s ac and dc
voltages are measured with a second lock-in amplifier and dc voltmeter, respectively, after passing through
an additional signal amplifier.
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Figure 14: Block diagram of the electronics used for measuring dI/dV and d2I/dV2.



5.3.1 Sourcing

The dc voltage is supplied by a Keithley 263 Calibrator/Source (K263), which can supply ±20 V. The
sample voltages we desire are usually in the range of 1 V or less, and often on the scale of 1 mV. In order
to avoid discretization noise, we put out a relatively large voltage and attenuate it. The attenuation factor
is selectable with a four-position switch: 20, 40, 400, 4000. For instance, we might source 4 V from the
K263, but attenuate it by a factor 4000 to supply 1 mV to the sample and its wiring.

To illustrate the advantage in attenuation, let us assume that the 20 V range is covered by a 12 bit analog
to digital converter. That means that the 20 V range is split in to 4096 discrete voltage values, so the volt-
age can only take on discrete values in increments of ∼4.9 mV. If we desire a modulation voltage of 3 mV,
and can only put out a minimum voltage of 4.9 mV, we have a relative error of over 60%. Attenuating
by a factor of 400 gives us a step size of 12 µV, and a relative error of only 0.4%.

The ac voltage is supplied by the output of the Stanford 830 (SR830) lock-in amplifier, which has a range
of 0−5 V. The ac voltage is used as a modulation for measuring dI/dV , for example, and therefore must
be small compared to the dc voltage. In extreme cases, it might be only 20 µV peak-to-peak. As with
the dc voltage, we apply a fairly large signal from the SR830, and attenuate it by a large factor, selectable
in 5 ranges from 1 to 10k. This ac modulation represents the dV part of the dI/dV measurement. In
order to have a constant resolution measurement, its magnitude must remain constant. However, since
we typically measure non-linear elements such as tunnel junctions, it is not sufficient to simply set this
voltage once for a given measurement. Software feedback (a simple PID loop) is employed to constantly
maintain the ac modulation on the sample of interest to within 10% or better of the desired value (more
details below).

A dI/dV or d2I/d2V measurement involves sourcing the dc sample voltage with a small ac modulation
voltage superimposed on it, which means we must add the two source voltages. The attenuation for
both ac and dc voltages is performed by a home-made amplifier, pictured in Fig. 15, which also serves to
buffer the two signals from each other. They are then added in a 1 : 1 ratio with a home-made summing
amplifier.

5.3.2 Measuring Voltage

Measuring the sample voltage is accomplished with two independent leads to the sample (for a true
four-point measurement), which are fed into a battery-powered EG&G 113 wideband amplifier (gain
10−10k, selectable lo- and hi-pass filters). The dc portion of the signal is measured by a HP 3478A
digital voltmeter to measure the dc voltage on the sample, while the ac voltage on the sample, the dV part
of dI/dV , is measured by the same SR830 lock-in amplifier that supplies the ac modulation. Since the
sample resistance is not always large compared to the wiring (not to mention the fact that the amplifier
gain might not be precisely constant) it is necessary to separately measure the actual ac voltage on the



Figure 15: Schematic of the home-built amplifier for attenuating, buffering, and summing the ac and dc voltages. Courtesy D. Whitcomb.

sample. The ac voltage measured on the sample is compared with the desired ac modulation given by the
user, and a simple software PID loop adjusts the lock-in amplifier output to maintain the actual ac voltage
on the sample to with 10% of the desired value.

5.3.3 Measuring Current

Measuring the sample current is accomplished by a Keithley 428 (K428) current pre-amplifier in series
with the sample of interest. The current pre-amplifier appears (essentially) as a zero-ohm load to the
sources, and outputs a voltage signal proportional to the current through it. It has a selectable gain of
10k−100G V/A, so measuring pA currents is possible on a good day. This signal is fed directly into a
HP 3458A digital voltmeter to measure the dc current. The ac current signal (the dI part of dI/dV) is fed
through a battery-powered EG&G 113 wideband amplifier (gain 10−10k, selectable lo- and hi-pass filters)
and then to a Stanford Research 830 lock-in amplifier to measure the dI signal. This lock-in amplifier is
synchronized with the ac source from the first lock-in at f (for dI/dV) or 2f (for d2I/dV2).

The EG&G amplifiers are necessary for two main reasons. First, the ac voltage and current signals can
be quite small, and amplification can be necessary. Second, the input impedance of the lock-in amplifiers
is only 10 MΩa, so these high-input-impedance amplifiers act as buffers when measuring high resistance
samples. The current pre-amplifier is preferable over a simple resistive shunt to reduce noise: having
a small resistance in series for measuring current leads to small and noisy signals, while having a large



resistance in series leads increased Johnson-Nyquist noise.

5.3.4 Miscellanea

5.4 Software

5.4.1 Basic principles

5.5 Further practical considerations

6 Tunnel Junctions & other non-linear elements

6.1 Simmons & Brinkman models

6.2 dI/dV measurements

6.3 d2I/dV2 measurements

6.4 Parallel RC model

A tunnel junction is a metal-insulator-metal structure, which means that it also acts as a parallel-plate
capacitor. One may view the structure as a “leaky” capacitor, modeled as a parallel resistor and capacitor.
For most of our work involving tunnel junctions, the resistive current dominates the device response
at the measurement frequency, and most of the time we can consider the device to be purely resistive.
However, there is no sharp boundary between a purely resistive junction and a purely capacitive one: es-
sentially all devices we measure will have both resistance and capacitance, we only try to ensure that most
of the time the former is dominant and the latter negligible. The conduction through a tunnel junction
at finite frequency can be resistive via tunneling or via the capacitance, and there are simple mechanisms
for determining which contribution might be dominant. Of course, for simple dc measurements, the ca-
pacitive component causes us no concern beyond setting a minimum τ=RC time scale for measurement
perturbations.

6.4.1 Magnitude of the capacitive current

For most work involving tunnel junctions, the capacitive current is considered to be parasitic, and should
be avoided. Hence, in doing an ac measurement, care must be taken that most of the current across the
barrier is due to tunneling process, and not by capacitance. If we model the tunnel junction as a resistor
R and capacitor C in parallel, we can get a feeling for how large this parasitic effect can be under typical
conditions.

Of course, at “sufficiently” high frequency, most current will be via the capacitor, since its impedance
is inversely proportional to the driving frequency, Zc = 1/iωC. At “sufficiently” low frequency, the
current is mostly due to tunneling because the capacitor has essentially an infinite impedance. If we take



as our criterion in choosing the excitation frequency that the resistive current should be at least 10 times
the capacitive current:

∣∣∣∣ IR

IC

∣∣∣∣ > 10 (62)

Conservation of current dictates that

Is cos(ωt) = IC + IR = −ωCV0 sin(ωt + α) +
V0

R
cos(ωt + α) (63)

where Is cos(ωt) is the excitation current, V =V0 cos(ωt + α) is the voltage across the junction, and α

is the phase lag in the voltage response. Combining (62) and (63), we have

1
ωRC

> 10 =⇒ ω = 2πf 6
1

10RC
= 0.1τ−1 =⇒ f . 0.016τ−1 (64)

In other words, the modulation frequency should be about 2% of the inverse RC time constant of the
junction for the resistive contribution to dominate. We can estimate the capacitance of a typical (large)
junction of area 300× 300 µm2 and barrier thickness of 2.0 nm, assuming the relative dielectric constant
εr ∼10:

C =
Aε0εr

d
=

(300× 300× 10−12)(8.85× 10−12)(10)

2× 10−9
F = 1 nF (65)

If we assume an excitation frequency of 1 kHz, then we can estimate the maximal resistance for which
the tunnel current is still an order of magnitude greater than the capacitive current:

R 6
1

ωCJ
=

1
2πfCJ

=
1

(2π)(1000)(1× 10−9)
≈ 40 kΩ (66)

Within this crude model, then, for resistances higher than ≈ 40 kΩ, a 1 kHz excitation frequency will
be too high to be considered purely resistive. Experimentally, whether the current through the barrier
is mostly resistive or capacitive can be easily checked by observing the phase of the current signal. If the
current is mostly resistive, the current signal should be more or less in-phase (say, ±10◦) with the mod-
ulation voltage. If the phase shift is significantly larger, this typically means the capacitance is too high,
and a lower excitation frequency should be used to ensure that the resistive contribution is dominant.



6.4.2 Parallel RC model in more detail

Let us assume for the moment that we are unlucky, and the resistive current does not dominate, or at
least that we are not certain. If the electrode and lead resistances are negligible, we can model the tunnel
junction itself as a parallel RC circuit driven by a time-varying signal Vin. The currents through the
resistor Ir and the capacitor Ic and the total current It are readily determined:

Ic = iωCVin (67)

Ir = Vin/R (68)

It =
√

I2r + I2c = Vin

√
1
R2

+ ω2C2 (69)

The total impedance Zt of this circuit, the ratio of Vin to the total current It, is

Zt =
Vin
It

=
R

1 + ω2C2R2
(1 − iωRC) (70)

|Zt| =

√
R2

1 + ω2R2C2
(71)

The phase angle for the current is given by

tanα = ωRC (72)

This already illustrates one important point: if the capacitance is negligible, the phase angle of dI ap-
proaches zero, whereas if the capacitance becomes large, the phase angle approaches 90◦. This is the
easiest way to determine which contribution dominates: if the phase is near zero, the device is predom-
inantly resistive; if the phase is near 90◦, the device is predominantly capacitive. Anything in between,
and a more complete analysis must be performed.

Since this is a parallel circuit, the voltages on the resistor and capacitor are simply equal to Vin. In our
measurement, we will measure Vin, the total current It, and its phase α, and we wish to extract R and C.

From Eq. 70 or 69 we can already calculate dI/dV for the circuit as a whole:

dI

dV
=

√
1
R2

+ ω2C2 (73)

This will be the result of a measurement of dI/dV which consists of dividing the magnitude of the ac



current by the magnitude of the ac modulation voltage, with the phase of the dI signal being α relative
to the modulation voltage. If the capacitance is negligible, we recover the familiar result dI/dV =1/R for
an ohmic resistor, while if the capacitance is dominant, we find dI/dV = iωC=1/Zc.

Upon rearranging, we can extract the resistive and capacitive contributions from the measured dI/dV

and phase angle α:

1
R

=
dI/dV√

1 + tan2 α
(74)

C =
dI/dV

ω
√

1 + 1/ tan2 α
(75)

This brings up the last important point: by measuring the magnitude of dI/dV (dividing the magnitude
of the ac current by the magnitude of the ac modulation voltage) and the phase angle α, one can ex-
tract both the resistive and capacitive contributions to conduction. For example, one can simultaneously
measure variation of conductance with dc bias and the variation of capacitance with voltage. As another
example, what we typically consider to be a conductance measurement is also a form of dc-bias-dependent
impedance spectroscopy, if the measurement is performed at various frequencies.

Finally, the table below gives a few numerical examples. As a rule of thumb, when the phase α is greater
than ∼ 5−10◦, the capacitive contribution is no longer negligible. At our standard operating frequency
of 1 kHz, junctions below R ∼ 10 kΩ typically present no problems, while above R ∼ 100 kΩ problems
are frequently encountered (consistent with our estimated capacitance of ∼ 1 nF for a large junction).
Reducing the frequency to 100 Hz has marginal gain, and reducing the frequency further both increases
noise and unacceptably increases measurement time. For very high resistance junctions (& 100 kΩ) the
capacitive contribution is almost always a factor. Not to mention the fact that the resistive signal is very
small, presenting its own problems.



Table 1: Impedance and phase angle for parallel RC circuits.

R=1 kΩ, f=1 kHz
C 1pF 10pF 100pF 1nF 10nF 100nF 1µF

|Z|=1/dI/dV (Ω) 1,000.00 1,000.00 1,000.00 999.98 998.03 846.85 157.25
α (◦) 0.00 0.00 0.04 0.36 3.59 32.13 80.95

R=10 kΩ, f=1 kHz
C 1pF 10pF 100pF 1nF 10nF 100nF 1µF

|Z|=1/dI/dV (Ω) 10,000.00 10,000.00 9,999.80 9,980.34 8,468.55 1,572.54 159.22
α (◦) 0.00 0.04 0.36 3.59 32.13 80.95 89.09

R=100 kΩ, f=1 kHz
C 1pF 10pF 100pF 1nF 10nF 100nF 1µF

|Z|=1/dI/dV (Ω) 99,999.98 99,998.03 99,803.39 84,685.45 15,725.45 1,592.15 159.24
α (◦) 0.04 0.36 3.59 32.13 80.95 89.09 89.91

R=1 kΩ, f=10 kHz
C 1pF 10pF 100pF 1nF 10nF 100nF 1µF

|Z|=1/dI/dV (Ω) 1,000.00 1,000.00 999.98 998.03 846.85 157.25 15.92
α (◦) 0.00 0.04 0.36 3.59 32.13 80.95 89.09

R=1 kΩ, f=100 Hz
C 1pF 10pF 100pF 1nF 10nF 100nF 1µF

|Z|=1/dI/dV (Ω) 1,000.00 1,000.00 1,000.00 1,000.00 999.98 998.03 846.85
α (◦) 0.00 0.00 0.00 0.04 0.36 3.59 32.13

R=100 kΩ, f=100 Hz
C 1pF 10pF 100pF 1nF 10nF 100nF 1µF

|Z|=1/dI/dV (Ω) 100,000.00 99,999.98 99,998.03 99,803.39 84,685.45 15,725.45 1,592.15
α (◦) 0.00 0.04 0.36 3.59 32.13 80.95 89.09



6.4.3 Impedance spectroscopy

6.5 Other concerns

7 Noise in resistive devices

In electronics and communication systems, noise is a random fluctuation or variation of an electromag-
netic analog signal such as a voltage or a current. Electronic noise is a characteristic of all electronic
circuits. Depending on the circuit, the noise generated by electronic devices can vary greatly and arise
through several different mechanisms. Contributions such as thermal noise and shot noise are inherent to
all devices, while other types depend mostly on manufacturing quality and defects. Though noise usually
has a negative connotation, it does have its uses – for instance, noise power is used in low-temperature
thermometry, and the study of noise can be a powerful technique for elucidating the microscopic mech-
anisms of conduction.

A noise signal is typically considered as a linear addition to a useful information signal, typified in Fig. 16
where a noise signal is superimposed on constant voltage signal. Noise is a random process, characterized
by stochastic properties such as its variance, distribution, and spectral density. The spectral distribution
of noise can vary with frequency, so its power density is measured in watts per hertz (W/Hz). Since the
power in a resistive element is proportional to the square of the voltage across it, noise voltage (density)
can be described by taking the square root of the noise power density, resulting in volts per root hertz
(V/

√
Hz). Integrated circuit devices, such as operational amplifiers commonly quote equivalent input

noise level in these terms (at room temperature).

Noise levels are usually viewed in opposition to signal levels and so are often seen as part of a signal-
to-noise ratio (SNR). Typical signal quality measures involving noise are signal-to-noise ratio (SNR or
S/N), signal-to-quantization noise ratio (SQNR) in analog-to-digital conversion, and compression, peak
signal-to-noise ratio (PSNR) in image and video coding, carrier to noise ratio (CNR) before the detector
in carrier-modulated systems, and noise figure in cascaded amplifiers.
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Figure 16: (left): Time-domain signal showing random
noise. (right): Distribution of the noise about the average
voltage, approximately Gaussian.



The fluctuation of, e.g., a voltage signal about its mean value is governed by a random process, namely
the collisions of the electrons making up the current. In this regard, the analysis of electrical noise
will closely parallel the analysis of counting statistics in radioactive decay, and both electrical signal and
counting noise can be reduced through signal averaging techniques. Crucial differences arise, however,
due to the differing physical origins of the fluctuations in the two systems. In the case of electrical noise,
one may also effectively reduce fluctuations by controlling the measurement temperature and bandwidth
and the overall resistance of the device under test.

7.1 Thermal Noise

Thermal noise, or Johnson-Nyquist noise, is the electrical noise generated by random thermal agitation
of the charge carriers in an electrical conductor at equilibrium. The direction of the movement of the
charge carriers is changed by collisions with, for example, the host crystal, impurities and other electrons,
resulting in a random movement at zero voltage (Brownian motion), and a certain degree of randomness
in their movement at finite voltages. This random movement gives rise to fluctuations in the net current
in the conducting material. These fluctuations time-average to zero, but the time-average of the square
of the fluctuations is not. Since thermal noise results from a random process, its amplitude very nearly
follows a Gaussian probability density function, as shown in Fig. 16. xviii

Since the movement of electrons is only correlated within the time between two collisions, there is es-
sentially no frequency-dependence of the noise for frequencies lower than the reciprocal collision time
1/τ of the electrons. The collision time determines the conductivity of a material. In Cu, for example,
τ≈2.5× 1014 s, so below 1/τ≈40 THz thermal noise is frequency-independent, or “white."xix

Thermal noise can be modelled as a resistor representing the device under test in series with a random
voltage source, or in parallel with a random current source. This is because by using Thévenin and
Norton equivalents, any linear electrical network consisting of combinations of voltage sources, current
sources, and resistors can be replaced with a single resistor and a series voltage or parallel current source.
Thus, an ideal, noise-free resistive device can be replaced by an ideal, noise-free resistor in series with a
random voltage source. The root mean square noise voltage produced in a resistor R at temperature T is
given by

〈V2〉 = V2
rms = 〈V〉2 + σ2 = 4kBTR∆f (76)

xviiiThermal noise is, formally, distinct from “shot noise,” a type of electronic noise that occurs when the finite number of
electrons is small enough to give rise to detectable statistical fluctuations. While shot noise will dominate only at very low
currents, thermal noise is always present.

xixThe frequency spectrum is the Fourier transform of the signal in the time domain. If the signal is random in the time
domain, it can be thought of as containing all possible frequencies superimposed in equal amounts.



where kB is Boltzmann’s constant and ∆f the bandwidth of the measurement. If your measurement uses
amplifiers with a lower cutoff frequency fl and an upper cutoff frequency fh, the effective bandwidth of
the measurement can be expressed as

∆f =
π

2
f2
h

fh + fl
≈ π

2
fh (fh � fl) (77)

As a concrete example, let’s suppose that R = 10 kΩ, T = 295 K, and our bandwidth is set by filters of
1 Hz and 100 kHz (∆f≈157 kHz). Then we find Vrms≈16 µV. This represents the limit for the smallest
voltage we can resolve across this resistor in this bandwidth. Note that if we put two resistors in series,
the mean square voltage is given by

V2
rms, tot = 4kBT (R1 + R2) = V2

rms, 1 + V2
rms, 2 (78)

The noise powers add, not the noise voltages. For an arbitrary resistive circuit, we can find the equivalent
noise by using a Thevenin (Norton) equivalent circuit or by transforming all noise sources to the output
by the appropriate power gain (e.g. voltage squared or current squared).

We can already draw two important conclusions: the noise in a given resistive device can be effectively re-
duced by reducing the temperature of the device, or by reducing the measurement bandwidth. While the
former is not always feasible, a number of clever solutions exist for reducing measurement bandwidth.
A simple technique we will use here is signal averaging, which reduces the bandwidth by repeatedly sam-
pling the quantity of interest. More sophisticated techniques, such as lock-in detection (modulation) will
be explored in future labs.

A third factor influencing the noise voltage is the resistance of the circuitry under study. Even in the
simplest possible system, a short-circuited resistor, the noise voltage produced increases as

√
R, and a

noise current
√
〈I2〉 =

√
〈V2〉/R =

√
4kBT∆f/R must be produced. Decreasing the resistance of the

circuit under study, if feasible, will reduce the noise in the measured voltage at the expense of the noise
in the measured current. Thermal noise is intrinsic to all resistors and is not a sign of poor design or
manufacture, although resistors may also have excess noise.

In addition to thermal noise in the device under study, one must also consider the noise present in the
components making up the sources, amplifiers, and meters used. For example, consider a simple circuit
consisting of a single resistor connected to a current source, and we wish to measure the voltage produced
on the resistor. Independent of the current level, the thermal noise voltage measured on the resistor will
remain the same. However, the current source itself is not perfect, and the current supplied will have
its own variance 〈I2〉. These current fluctuations lead to additional voltage fluctuations measured on the



resistor. Since the current source fluctuations are independent of the thermal fluctuations in the resistor,
we must add the variances in quadrature (i.e., add the noise powers):

〈V2〉tot = 〈V2〉source + 〈V2〉thermal (79)

7.2 Random Telegraph Noise

Random telegraph noise, also called burst, popcorn, impulse, or bi-stable noise, is another type of elec-
tronic noise that is frequently encountered, particularly in semiconductors. This type of noise consists of
sudden step-like transitions between two or more discrete voltage or current levels, as high as several hun-
dred microvolts, at random and unpredictable times. An example is shown in Fig. 17. Each shift in offset
voltage or current often lasts from several milliseconds to seconds, and sounds like popcorn popping if
hooked up to an audio speaker. No single source of popcorn noise is theorized to explain all occurrences,
however the most commonly invoked cause is the random trapping and release of charge carriers at thin
film interfaces or at defect sites in bulk semiconductor crystal. For the present experiment, we wish to
avoid telegraph noise as much as possible.
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Figure 17: A voltage signal exhibiting telegraph noise in ad-
dition to random noise. The jump in resistance is ∼0.08%.

8 Signal averaging

Once the sources of noise in a measurement are understood, the usual question is how they may be
reduced or eliminated. Thermal noise cannot be eliminated, but can be reduced by reducing device resis-
tance, temperature, or bandwidth. Once these parameters have been controlled, the remaining noise can
be further reduced through signal averaging techniques. In its simplest form, signal averaging just means
the repeated measurement of the quantity of interest.



As a more concrete example, our goal is to measure the voltage across a resistor. Rather than making only
a single measurement, we may improve our accuracy by taking N measurements and reporting the mean
result V . As we make more and more measurements, the uncertainty in our mean voltage compared to
the true voltage is given by the standard deviation of the mean

sV =
s√
N

(80)

where s is the standard deviation of our collection of measurements. The relative uncertainty of the mean
decreases as 1/

√
N, and this is at the heart of signal averaging: repeated measurements lead to increased

accuracy, at the price of increased measurement time. The latter point cannot be overestimated. While
the uncertainty in the mean voltage is reduced as O(1/

√
N), the measurement time increases as O(N),

and thus there exists for any measurement, due to practical considerations, a point at which further re-
duction of noise through signal averaging is no longer feasible. For example, to reduce the signal to noise
ratio by a factor of two, a factor of four increase in the number of measurements, and thus measurement
time, is required.

Figure 18 shows an example of the effect of averaging repeated measurements. In this measurement, a
500 Ω resistor was measured with a 1.5 mA constant current, and the measurement was repeated up to
1024 times. The ratio of the average voltage to the standard deviation – the signal to noise ratio – increases
steadily as

√
N.
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Figure 18: Effect of point averaging on a voltage signal.
The relative uncertainty σ/V decreases as

√
N, while the

signal-to-noise ratio V/σ increases as
√

N.



9 Summary of Noise and Averaging

The root-mean square (RMS) voltage is the sum of the squared average voltage and the squared standard
deviation for a series of N measurements Vi is

〈V2〉 =

√√√√√ N∑
i=1

V2
i

N
= V2

rms = 〈V〉2 + σ2 = 4kBTR∆f (81)

For thermal noise, the RMS voltage is governed by the resistance R and temperature T of the device under
study and the measurement bandwidth ∆f. With no dc component present,

〈V2〉 = V2
rms = 4kBTR∆f (82)

If we drive a resistive device with a current source which also has inherent fluctuations, the total noise
voltages from the resistive load and current source add in quadrature. That is, we add the noise powers:

〈V2〉tot = 〈V2〉source + 〈V2〉thermal (83)

The signal to noise ratio (SNR) when a dc component is present is defined as the ratio of the mean voltage
to its standard deviation. For a large collection of measurements of size N, the SNR increases as

√
N:

SNR =
V

σ
∝
√

N (84)


