
PH 253 / LeClair Fall 2013

Problem Set 5 Solutions

1.
(a) Show that the speed of an electron in the nth Bohr orbit of hydrogen is αc/n, where α is the

fine structure constant, equal to e2/4πεo~c≈1/137.
(b) What would be the speed in a hydrogen-like atom with a nuclear charge of Ze?
(c) Let’s say our threshold for worrying about relativistic effects when it amounts to a 10%

correction, where γ = 1.10 (implying v/c ≈ 0.42). For the ground state of a hydrogen-like
atom, for which element do we reach this threshold?

(d) Following the previous question, at what element is the correction 50% (γ=1.5, v/c≈0.745).i

Solution: (a) Our main condition in deriving the Bohr model was the quantization of angular
momentum (or, if you like, that the electron orbit is an integral number of wavelengths), mvr=n~.
We also figured out that the radius for the nth state is rn=4πεo~2n2/me2. Putting this together,

v = n~
mr

= n~
m

me2

4πεo~2n2 = 1
n

e2

4πεo~
= 1
n

e2

4πεo~
c

c
= αc

n
(1)

(b) For a nuclear charge Z in a hydrogen-like atom of atomic number Z, the Coulomb force between
the nucleus and electron is Z times larger. If you follow back through the Bohr model derivation,
this means that the radius is decreased by a factor Z, and the velocity increased by a factor Z.

v = αcZ

n
(2)

(c) If we want relativistic effects to be less than 10%, v/c≈0.42. That means

v

c
= αZ

n
= 0.42 =⇒ Z = nv

αc
≈ 57 (3)

This means, roughly speaking, that for elements of atomic number 57-58 (Lanthanum and Cerium)
relativistic effects are becoming important (at least for the case where all but one electron is ionized
away, but the rough conclusion holds). For understanding the details of properties like magnetism,
however, we have to worry about relativity much earlier, even for light transition metals like Fe and
Co. For understanding the more subtle and nuanced effects in, say, atomic spectra, even hydrogen
has relativistic corrections to worry about, if your experiment is accurate enough.

iThe inclusion of relativistic effects on electron orbitals has dramatic consequences for heavier elements like Hg:
http://www.rsc.org/chemistryworld/2013/06/why-mercury-liquid-relativity-evidence

http://www.rsc.org/chemistryworld/2013/06/why-mercury-liquid-relativity-evidence


(d) The point at which relativity is a 75% correction, v/c ≈ 0.745 - long past the point when
classical physics will have failed us even qualitatively - comes at

Z = nv

αc
≈ 102 (4)

This is Nobelium. By the time one gets into the actinides, relativity isn’t just a correction, it is
required for even a basic understanding of what’s going on.

2. An electron is in the n=5 state of hydrogen. To what states can the electron make transitions,
and what are the energies of the emitted photons?

Solution: From the n= 5 state, the electron can only transition to states of lower energy, which
would be to the first through fourth energy levels.ii The energy of the nth level in the Bohr model
is

En = −13.6 eV
n2 (5)

The energy of the emitted photons must be the same as the energy difference between the 5th level
and the final level (which we’ll just call m). The energy difference is then

∆E5m = E5 − Em = −13.6 eV
( 1

52 −
1
m2

)
(6)

Below, we tabulate the results. One emission in the visible range results.

m ∆ (eV) spectrum range

4 −13.6
(

1
25 −

1
16

)
=0.306 mid infrared

3 −13.6
(

1
25 −

1
9

)
=0.967 near infrared

2 −13.6
(

1
25 −

1
4

)
=2.86 blue/violet visible

1 −13.6
(

1
25 −

1
1

)
=13.1 extreme UV

3. Find the directions in space where the angular probability density for the l=2, ml=0 electron
in hydrogen has its maxima and minima.

Solution: The principle quantum number n was not specified. Since l= 2, we know n≥ 3. Since
you only have the n ≤ 3 wavefunctions available in your text, we may as well pick n = 3 for

iiOf course, if the electron went from, say, 5 to 3, it could then go from 3 to 2 and 2 to 1, or directly from 3 to
1. Eventually, the electron in the n=5 state would find its way back to the lowest n=1 energy level. If you wanted
to find all the possible ways to get there, you’d need the number of ways 5 things can be combined in pairs in which
the order doesn’t matter - mathematically, a combination. Here we would want

(5
2

)
=5!/2!(3 − 2)!=10, so there are

10 ways to get to the ground state from n=5.



convenience.The (3, 2, 0) wave function isiii

Θ(θ) =
√

3
8
(
3 cos2 θ − 1

)
(7)

The angular probability density is just the square of this

P (θ) = |Θ(θ)|2 = 3
8
(
3 cos2 θ − 1

)2
(8)

The maxima and minima will be when dP/dθ= 0. We can ignore the overall constant 3/8 (since
we’ll be setting everything to zero anyway), and then just take the derivative.

dP

dθ
= −12 sin θ cos θ

(
3 cos2 θ − 1

)
= 0 (9)

We are basically done. The sin cos pre-factor will be zero at {0, 90◦, 180◦} and integer multiples
thereof. The other roots are

0 = 3 cos2 θ − 1 =⇒ θ = cos−1
(±1√

3

)
≈ {55◦, 155◦} (10)

Which are maxima and which are minima? Either use the second derivative test, or make a quick
plot.iv You can by inspection notice that the last set of roots would be zeroes of P , and since P ≥0
they must be minima. You’d still need to verify what the first three roots are though.

Anyway: a plot quickly leads us to identify

{0, 90◦, 180◦} maxima

{55◦, 125◦} minima

4. What is the probability of finding an n=2, l=1 electron between ao and 2ao?

Solution: Now our first problem is that m wasn’t specified, and we can have m={0,±1}. Does m
make a difference in finding the probability? Should either ϕ or θ make any difference in a quantity
which is only a function of the radius?

The answer is no, but one can’t just guess that. There is really only one way to find out. As it
turns out, we can do all three possibilities with almost no extra work. The relevant wave functions

iiiIn lecture, I used P (θ) for the angular wave function depending on θ. I’ll try to make the solutions consistent
with the text.

ivIn addition to Wolfram Alpha, try typing plot of y=(3(cos(x))^2-1)^2 in google.



are, in full,

ψ210(r, θ, ϕ) = 1
√

3 (2ao)3/2
r

ao
e−r/2ao

√
3
2 cos θ 1√

2π
(11)

ψ21±1(r, θ, ϕ) = 1
√

3 (2ao)3/2
r

ao
e−r/2ao

(
∓
√

3
2 sin θ

)
1√
2π
e±iϕ (12)

We first notice that the e±iϕ factor in the second equation will go away when we find |ψ21±1|, so it
is irrelevant for finding probability. Similarly, the ∓ sign on the sine term will go away. The only
real difference between the two functions is sine in place of cosine, and a factor of

√
2 overall. As it

turns out, the two differences will cancel each other out, and the probability is independent of m.

First, we need to find the probability density, |ψ|2 dV . The volume element in spherical coordinates
is r2 sin θ dr dθ dϕ, with θ ∈ {0, π} and ϕ ∈ {0, 2π}. Noting this, we can just square the wave
functions above and set up the integrals. Since we’re worried about radii from ao to 2ao, that sets
the limits for r. For ϕ and θ, we integrate over the full range of each variable.

P210 =
2π∫
0

1
2π dϕ

π∫
0

3
2 cos2 θ sin θ dθ

2ao∫
ao

1
24a3

o

r2

a2
o

e−r/aor2 dr (13)

P21±1 =
2π∫
0

1
2π dϕ

π∫
0

3
4 sin2 θ sin θ dθ

2ao∫
ao

1
24a3

o

r2

a2
o

e−r/aor2 dr (14)

Now, the ϕ integral is just going to give us a factor 2π in each, no problem. What about the θ
integrals? The integrands are different, but so are the pre-factors. Curious.

P210 :
π∫

0

3
2 cos2 θ sin θ dθ = 3

2 ·
2
3 = 1 (15)

P21±1 :
π∫

0

3
4 sin2 θ sin θ dθ = 4

3 ·
3
4 = 1 (16)

There is no θ or φ dependence, and this must be the case: since we asked a question that didn’t
depend on either angle, and then integrated over the whole range of both angles, it couldn’t come
out any differently. The angular functions are normalized, so it had to be the case that when we
integrated over their whole range the result is unity.

So: with sufficiently clever (and documented) reasoning, you could have started at this point right
here, recognizing that m doesn’t matter at all and you can just work with the radial functions.
Specifically, P210 =P21±1≡P21, so one can just use the radial function.



P21 =
2ao∫
ao

1
24a3

o

r2

a2
o

e−r/aor2 dr = 1
24a5

o

2∫
1

ao · a4
ou

4e−u du (let u = r/ao, du=dr/ao) (17)

P21 = 1
24

2∫
1

u4e−u du = 1
24

(65e− 168
e2

)
≈ 0.049 (18)

The expectation value of the radius in the n = 2, l = 1 state is 5ao, so it is not crazy that the
probability of finding the electron much closer to the nucleus than this is rather small. If you look
at the plot on pg. 208 in your textbook, you can see that the answer is reasonable. You can also
see that the answer does definitely depend on l, if not m, since the radial function is different for
l=0 and l=±1.

5. Find the most probable radius and the expected value of the radial position 〈r〉 of an electron
in the 2p state.

ψ2p = 1
√

3 (2ao)3/2
r

ao
e−r/2ao (19)

where a0 = 4πε0~2

mee2 =0.529×10−10 m is the Bohr radius.

Solution: The most likely distance corresponds to the distance at which the probability of finding
the electron is maximum. This is distinct from the expected value of the radius 〈r〉. For a 3D
wavefunction in spherical coordinates (r, θ, ϕ), the probability of finding an electron at a distance
r in the interval [r, r + dr] is the squared magnitude of the wavefunction times the volume of a
spherical shell of thickness dr and radius r, 4πr2. However, the wave function above is only the
radial function (R(r)), the θ and ϕ dependence has been neglected. That means to be formally
correct, the probability is

P (r) dr = |ψ|2 · r2 dr or P (r) = |ψ|2 · r2 (20)

That is, the factor 4π comes from integrating over θ and ϕ in the case when we have a wavefunction
which is independent of the angular coordinates. The 2p state does have an angular dependence,
so either we need to use the full wavefunction with the θ and ϕ dependence included, or we need
to use the probability density as given above. We will do the latter .Given ψ2p above, that gives us

P (r) =
∣∣∣∣ 1
√

3 (2ao)3/2
r

ao
e−r/2ao

∣∣∣∣2 · r2 = r4

24a5
o

e−r/ao (21)

The most probable radius is when P (r) takes a maximum value, which must occur when dP/dr=0
and d2P/dr2<0. Thus:



dP

dr
= 0 =

( 1
24a5

o

)
d

dr

(
r4e−r/ao

)
=
( 1

24a5
o

)(
4r3e−r/ao − r4

ao
e−r/ao

)
(22)

0 =
(

r3

24a5
o

e−r/ao

)(
4− r

ao

)
(23)

=⇒ r = {0, 4ao,∞} (24)

One can either apply the second derivative test or make a quick plot of P (r) to verify that r=4ao is
the sole maximum of the probability distribution, and hence the most probable radius, while r=0
and r=∞ are minima.

The expectation value is

〈r〉 =
∫
rP (r) dr =

∞∫
0

r5

24a5
o

e−r/ao dr = ao
24

∞∫
0

u4e−u du = ao
24 · 5! = 5ao (25)

6. (a) How many different sets of quantum numbers (n, l,ml,ms) are possible for an electron on
the 4f level? (b) Suppose a certain atom has three electrons in the 4f level. What is the maximum
possible value of the total ms of the three electrons? (c) What is the maximum possible total ml of
three 4f electrons? (d) Suppose an atom has ten electrons in the 4f level. What is the maximum
possible value of the total ms of the ten 4f electrons? (e) What is the maximum possible total ml

of ten 4f electrons?

Solution: 14, +3/2, +8, +2, +10

7. Energetics of diatomic systems An approximate expression for the potential energy of two ions
as a function of their separation is (treating the problem one dimensionally),

V = −ke
2

x
+ b

x9 (26)

The first term is the usual Coulomb interaction, while the second term is introduced to account
for the repulsive effect of the two ions at small distances. (a) What is the equilibrium spacing xo?
(b) Find b as a function of the equilibrium spacing xo. (c) For NaCl, with an equilibrium spacing
of ro = 0.236 nm, calculate the frequency of small oscillations about x = xo. Hint: do a Taylor
expansion of the potential energy to make it look like a harmonic oscillator for small x=xo.

Solution: The equilibrium spacing will be characterized by the net force between the ions being
zero, or equivalently, the potential energy being zero:



F (ro) = −dU
dr

∣∣∣∣
r=ro

= 0 = ke2

r2
o

− 9b
r10
o

(27)

ke2r8
o = 9b (28)

b = 1
9ke

2r8
o (29)

Substituting this result back into our potential energy expression, we can find the potential energy
at equilibrium, how much energy is gained by the system of ions condensing into a crystal. First,
the potential energy as a function of spacing:

PE = U(r) = −ke
2

r
+ ke2r8

o

9r9 (30)

Evaluating at equilibrium, ro=0.279 nm,

U(ro) = −ke
2

ro
+ ke2

9ro
= −8ke2

9ro
≈ −5.42 eV (31)

The frequency of small oscillations can be found by Taylor expanding the potential about equilib-
rium for small displacements from equilibrium:

U(r − ro) ≈ U(ro) + U ′(ro) (r − ro) + 1
2U
′′(ro) (r − ro)2 (32)

The first term in the expansion is just the potential energy at equilibrium which we found above.
The second term, linear in displacement, must vanish at equilibrium (which is exactly the condition
we enforced to find b, after all). The third term is quadratic in displacement, just as it would be
for a simple harmonic oscillator, U= 1

2k (r − ro)2. Thus, the coefficient of the quadratic term must
be 1

2k, which means the frequency of small oscillations is ω=
√
k/µ, where µ is the reduced mass

of the system:

µ = mNamCl
mNa +mCl

≈ 13.95 u = 2.32× 10−26 kg (33)

That is, the diatomic molecule looks like two masses coupled by a spring.

1
2k = 1

2U
′′(ro) (34)

k = U ′′(ro) = −2ke2

r3
o

90b
r11
o

= 8ke2

r3
o

≈ 140N/m (35)

ω =
√
k

µ
= 2πf (36)



The frequency of oscillation f is then

f = 1
2π

√
k

µ
≈ 1.24× 1013 Hz ≈ 414 cm−1 (37)

A reliable experimental value is about 365 cm−1, in good agreement with our simple model.v

8. A collection of hydrogen atoms is placed in a magnetic field of 3.50T. Ignoring the effects of
electron spin, find the wavelengths of the three normal Zeeman components of (a) the 3d to 2p
transition, (b) the 3s to 2p transition.

Solution: In a magnetic field B, the energy levels for a given l state will split according to their
value ofml. If the original energy of the level is El, then the original level will be split symmetrically
into 2l + 1 sub-levels, with adjacent levels shifted by µBB:

El,ml
= El +mlµBB (38)

This is shown schematically below for l= 2 and l= 1 levels. The 3d (l= 2) level has possible ml

values of ml = {−2,−1, 0, 1, 2}, and thus in a magnetic field B what was a single level is now 5
individual levels. For the 2p (l=1) level, we have ml values of only ml={−1, 0, 1}, and the original
level becomes a triplet upon applying a magnetic field.

l=2

l=1

∆Eo

0

Eo

2

1

−1

−2

ml

0

1

−1

B=0 B �=0

Figure 1: Allowed transitions from l=2 to l=1 with a magnetic field applied.

Before calculating anything, we can apply the dipole selection rules, which states that ml can
change by only {0,±1}. This means that, for example, from the l=2, ml=1 sub-level an electron
may “jump” to the any of the l=1, ml={2, 1, 0} sub-levels. On the other hand, from l=2, ml=2
sub-level an electron may only jump to the l= 1, ml = 1 sub-level. Following these rules, we see
from the figure above that there are only 9 possible transitions allowed. Further, noting that the
levels are equally spaced, we have in fact only three different transition energies.

vSee http://scitation.aip.org/content/aip/journal/jpcrd/36/2/10.1063/1.2436891.

http://scitation.aip.org/content/aip/journal/jpcrd/36/2/10.1063/1.2436891


The spacing between the levels ∆E is the Zeeman energy given above, ∆E = µBB. From our
schematic above, it is clear that the only possible transition energies in a magnetic field are the
original transition energy (no change in ml), or the original transition energy plus or minus ∆E (ml

changes by ±1). The original transition energy E and the corresponding wavelength λ is readily
found from our knowledge of the hydrogen atom

E = E3 − E2 = −13.6 eV
( 1

32 −
1
22

)
= 1.89 eV =⇒ λ = hc

E
= 656 nm (39)

(In the calculation of λ we useThus, the new transition energies must be

E 7−→ {E −∆E,E,E + ∆E} = {E − µBB,E,E + µBB} (40)

That is, the original transition energy plus two new ones. We can easily convert these two new
energies into two new wavelengths by the energy-wavelength relationship E=hc/λ. However, this
does require some numerical precision (i.e., carrying at least 7-8 digits in your calculations, and
knowing the requisite constants to commensurate precision), and it is somewhat easier to simply
calculate the change in energy by itself. You can do this with propagation of uncertainty, if you
aren’t familiar with it we will just quote the result:

∣∣∆λ∣∣ =
∣∣∣∣ dλdE

∣∣∣∣∆E = hc

E2 ∆E = λ2

hc
∆E (41)

Since we know the energy changes by ∆E and the base energy is E,

∣∣∆λ∣∣ = λ2∆Eo
hc

= λ2µBB

hc
≈ 0.07 nm (42)

The shift in energy of ∆Eo implies a shift in wavelength of ∆λ ≈ 0.070 nm, meaning the new
transitions must be at the original wavelength λ=656 nm plus or minus ∆λ=0.07 nm.

9. Consider a hydrogen atom and a singly-ionized helium atom (i.e., Bohr-like). Which atom has
the lower ground state energy, and how big is the difference? Justify your answer with an explicit
calculation, even if it is just an order-of-magnitude estimate.

Solution: For a hydrogen-like system (i.e., nucleus plus one electron) with Z protons in the nu-
cleus, the net attractive energy of the proton and electron will scale as Z. That’s one reason already
that the helium atom will be more stable, the electron is simply more attracted to the nucleus. A
second factor of Z comes in through the quantization of angular momentum, but the conclusion
does not change. If you work out the Bohr model energy levels from the start with a nuclear



charge of +Ze rather than just +e, you’ll find the energies scale as Z2.vi The higher Z is, the more
negative the electron energies are, and the more stable the atom.

We can estimate the difference as being a factor of Z2
He =4 compared to the hydrogen ground state

energy, or −13.6 eV · 3≈54.4 eV, which is a very good estimate.

10. The wave function for the ground state of hydrogen (n=1) is

ψ1 = 1√
πa3

o

e−r/ao (43)

where ao is the Bohr radius.

(a) What is the most probable value of r for the ground state?
(b) What is the total probability of finding the electron at a distance greater than this radius?

Solution: (a) Just like the last problem.

P (r) = 4πr2|ψ|2 = 4r2

a3
o

e−2r/ao (44)

dP

dr
= 4
a3
o

e−2r/ao

(
2r − 2r2

ao

)
(45)

=⇒ r = ao (46)

Again, a quick plot shows r= ao is a maximum in the probability distribution, so ao is the most
probable radius. We have again ignored the trivial solutions of r=0 and r→∞.
(b) The odds of the electron being at a distance larger than this is found by integrating P (r) dV
from ao outward to ∞.

P (r > ao) =
∞∫
ao

|ψ|2 · 4πr2 dr =
∞∫
ao

4r2

a3
o

e−2r/ao dr (47)

The substitution u=2r/ao, du=2 dr/ao makes this into a known integral. The limits then become
2 and ∞

P (r > ao) =
∞∫

2

u2

ao
e−u

ao
2 du = 1

2

∞∫
2

u2e−u du = 1
2
(
−e−u

) (
u2 + 2u+ 2

)∣∣∣∣∞
2

(48)

= 1
2e
−2 (10) = 5

e2 ≈ 0.677 (49)

viSee http://en.wikipedia.org/wiki/Bohr_model#Electron_energy_levels

http://en.wikipedia.org/wiki/Bohr_model#Electron_energy_levels


The probability distribution is rather asymmetric - there is approximately a 2 in 3 chance of finding
the particle farther from the nucleus than the most probable radius.

11. A phenomenological expression for the potential energy of a bond as a function of spacing is
given by

U(r) = A

rn
− B

rm
(50)

For a stable bond, m<n. Show that the molecule will break up when the atoms are pulled apart
to a distance

rb =
(
n+ 1
m+ 1

)1/(n−m)
ro (51)

where ro is the equilibrium spacing between the atoms. Be sure to note your criteria for breaking
used to derive the above result.

Solution: The potential U(r) has an associated force, the molecule’s restoring force:

F (r) = −dU
dr

(52)

The molecule will break when its maximum restoring force is reached, when dF/dr=−d2U/dr2 =
0. Equilibrium is when F = −dU/dr = 0. At the equilibrium spacing ro, the force is zero, or
equivalently, the potential is at a minimum.

F (ro) = −dU
dr

∣∣∣∣
ro

= nA

rn+1
o
− mB

rm+1
o

= 0 (53)

nA

mB
= rn+1

o

rm+1
o

= rn−mo (54)

ro =
(
nA

mB

) 1
n−m

(55)

Is this really a minimum for U? We can check with the second derivative test: if d2U/dr2 =
−dF/dr> 0 at ro, have a maximum. We will need dF/dr shortly anyway. You didn’t really need
to do this on your homework, but it is instructive:



−dF
dr

= d2U

dr2 = n (n+ 1)A
rn+2 − m (m+ 1)B

rm+2 (56)

d2U

dr2

∣∣∣∣
ro

= n (n+ 1)A
(
mB

nA

) n+2
n−m

−m (m+ 1)B
(
mB

nA

)m+2
n−m

(57)

=
(
mB

nA

)2 [
n (n+ 1)A

(
mB

nA

) n
n−m

−m (m+ 1)B
(
mB

nA

) m
n−m

]
(58)

=
(
mB

nA

)2 (mB
nA

) n
n−m

[
n (n+ 1)A−m (m+ 1)B

(
mB

nA

)m−n
n−m

]
(59)

=
(
mB

nA

)2 (mB
nA

) n
n−m

[
n (n+ 1)A−m (m+ 1)B

(
nA

mB

)]
(60)

=
(
mB

nA

) n+2
n−m

[
n (n+ 1)A− n (m+ 1)A

]
(61)

= nA

(
mB

nA

) n+2
n−m

[
n−m

]
> 0 (62)

Clearly, the only way this expression will be positive is if n>m, which means stable bonds have
n > m as the problem states. This means that the repulsive force has a higher index than the
attractive force, and it is of shorter range.

What about breaking the molecule? For distances smaller than ro, the force is repulsive, while for
distances greater than ro it is attractive – in either case, it serves to try and restore the equilibrium
position. However, the competition between the shorter-range repulsive force and longer-range at-
tractive force means that there is a critical distortion of the molecule for r>ro at which the force
is maximum, and any stronger force (or larger displacement) will separate the constituents to an
arbitrarily large distance – the molecule will be broken.

We have the force between the molecular constituents above:

F (r) = nA

rn+1 −
mB

rm+1 (63)

so we can readily calculate the maximum force with which the bond may try to restore its equilib-
rium. The force above is the force with which the molecule will respond if we push or pull on it.
The maximum force will occur when dF/dr=0, at a radius rb



dF

dr

∣∣∣∣
rb

= n(n+ 1)A
rn+2
b

− m(m+ 1)B
rm+2
b

= 0 (64)

n(n+ 1)A
m(m+ 1)B = rn+2

b

rm+2
b

= rn−mb (65)

rb =
(

n(n+ 1)
m(m+ 1)B

) 1
n−m

=
(
nA

mB

) 1
n−m

(
n+ 1
m+ 1

) 1
n−m

(66)

Now, how do we know this is the maximum force, and not a minimum force? We grind through
another derivative . . . we must have d2F/dr2>0 for a maximum:

d2F

dr2 = n (n+ 1) (n+ 2)A
rn+3 − m (m+ 1) (m+ 2)B

rm+3 = rn+3
[
n (n+ 1) (n+ 2)A− m (m+ 1) (m+ 2)B

rm−n

]
d2F

dr2

∣∣∣∣
rb

= rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (m+ 1) (m+ 2)Brn−mo

(
n+ 1
m+ 1

)n−m
n−m

]

= rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (n+ 1) (m+ 2)Brn−mo

]
(67)

= rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (n+ 1) (m+ 2)B

(
nA

mB

)]
(68)

= rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A− n (n+ 1) (m+ 2)A

]
(69)

= An (n+ 1) rn+3
o

(
n+ 1
m+ 1

) n+3
n−m

[
n−m

]
> 0 (70)

For the second to last line, we noted that rn−mo = nA/mB. Once again, if n > m, the second
derivative is positive, and thus the force is maximum at rb. Applying a force sufficiently strong to
stretch the bond to a separation rb will serve to break it. Incidentally, the maximum force required
is

F (rb) = nA

rn+1
o

(
n+ 1
m+ 1

) n+1
m−n

− mB

rm+1
o

(
n+ 1
m+ 1

)m+1
m−n

=
(
n+ 1
m+ 1

) n+1
m−n

[
nA

rn+1
o
− mB

rm+1
o

(
n+ 1
m+ 1

)]

=
(
n+ 1
m+ 1

) n+1
m−n

[
nA

(
nA

mB

) n+1
m−n

−mB
(
nA

mB

)m+1
m−n

(
n+ 1
m+ 1

)]
(71)

=
(
n+ 1
m+ 1

) n+1
m−n

(
nA

mB

) n+1
m−n

[
nA− nA

(
n+ 1
m+ 1

)]
(72)

= nA

(
n+ 1
m+ 1

) n+1
m−n

(
nA

mB

) n+1
m−n

(
m− n
m+ 1

)
= nA

rn+1
b

(
m− n
m+ 1

)
(73)

12. Explain why each of the following sets of quantum numbers (n, l,ml,ms) is not permitted for
hydrogen:



(2, 2,−1,+1
2)

(3, 1,+2,−1
2)

(4, 1,+1,−3
2)

(2,−1,+1,+1
2)

Solution: Let’s look at them one by one:

(2, 2,−1,+1
2) (74)

From this we gather n=2, which means that l is restricted to the set {0, 1}. Since this set claims
l=2, it is clearly invalid.

(3, 1,+2,−1
2) (75)

Here we have n=2 and l=1. This restricts ml to the set {−1, 0, 1}, so the listed value of ml=+2
is invalid.

(4, 1,+1,−3
2) (76)

We need only look at the value of ms. The electron spin quantum number can be only +1
2 or −1

2 ,
not −3

2 .

(2,−1,+1,+1
2) (77)

Here we have n=2. The value of l is restricted to zero positive integers less than n, so the claim of
l=−1 makes this set invalid.

13. List the excited states (in spectroscopic notation) to which the 4p state can make downward
transitions.

Solution: Ignoring spin, the relevant selection rule is ∆l = ±1. For the 4p state, l = 1, so we
can move to states that are lower in energy (such that we have a downward transition) that have
l={0, 1}, i.e., s and d states. Given n=4, we are left with transitions to 3d, 3s, 2s, and 1s.

In our simplest model of the hydrogen atom, the 4s state would have the same energy as the 4p



state, and no transition is possible. However, you now know that spin-orbit coupling makes the
4s state slightly lower in energy than the 4p state, so a downward transition 4p → 4s is also in
principle possible. In this case we would have to worry about spin conservation and whether the
transition requires a spin fill, and it becomes a bit complicated. Let’s just say it is unlikely. (No
points off if you missed this one, since it is a subtlety.)

14. Splitting of Hydrogen lines. The electron’s intrinsic magnetic moment ~µs and intrinsic spin
angular momentum ~S are proportional to each other; their relationship can be written as

~µs = −gs
e

2m
~S = −gsµb

~S
~

(78)

with gs≈2. The energy of the electron in a effective magnetic field ~B is E=−~µs · ~B.

In hydrogen, transitions occur between two spin-orbit-split 2p states and a single 1s state, leading to
two emission lines. If the emission wavelength in the absence of spin-orbit coupling is 656.47 nm, and
the spin-orbit splitting is 0.016 nm, estimate the strength of the effective magnetic field produced
by the electron’s orbital motion (i.e., the effective field due to the spin-orbit interaction) which
results in this wavelength difference.

Solution: We can make use of the result below to relate the energy and wavelength differences,
viz.:

∣∣∆λ∣∣ =
∣∣∣∣ dλdE

∣∣∣∣∆E = hc

E2 ∆E = λ2

hc
∆E (79)

Given a wavelength difference, we can find the energy difference. In a magnetic field, electrons take
on two different energy states depending on whether their spins are parallel or antiparallel to the
field, with their difference in energy being 2µsB. Given gs= 2, µs=µB, and the energy difference
in a magnetic field is ∆E=2µBB. Thus,

∆E = 2µbB = hc∆λ
λ2 (80)

Solving for B, and using the numbers given,

B = hc∆λ
2µBλ2 ≈ 0.4T (81)

15. Multiplicity of atomic magnetic moments. Calculate the magnetic moments that are possible
for the n= 4 level of Hydrogen, making use of the quantization of angular momentum. You may
neglect the existence of spin. Compare this with the Bohr prediction for n=4.



Solution: If n=4, then we have possible values for l of l={0, 1, 2, 3}. This gives us the magnetic
moments possible:

µ = −µB
√
l(l + 1) (82)

µ = {0,
√

2,
√

6, 2
√

3}µB (83)

By comparison, the Bohr model would predict for level n a magnetic moment of nµB, or 4µB in
this case.

16. Transitions in a magnetic field. Transitions occur in an atom between l= 2 and l= 1 states
in a magnetic field of 2.0T, obeying the selection rules ∆ml = 0,±1. If the wavelength before the
field was turned on was 680.0 nm, determine the wavelengths that are observed. You may find the
following relationship useful:

∣∣∆λ∣∣ =
∣∣∣∣ dλdE

∣∣∣∣∆E = hc

E2 ∆E = λ2

hc
∆E (84)

Recall that the Zeeman effect changes the energy of a single-electron atom in a magnetic field by

∆E = ml

(
e~

2me

)
B with ml = −l,−(l − 1), . . . , 0, . . . , l − 1, l (85)

For convenience, note that e~/2me=µB≈57.9µ eV/T, and neglect the existence of spin.

Solution: In a magnetic field B, the energy levels for a given l state will split according to their
value ofml. If the original energy of the level is El, then the original level will be split symmetrically
into 2l + 1 sub-levels, with adjacent levels shifted by µBB:

El,ml
= El +mlµBB (86)

This is shown schematically below for l= 2 and l= 1 levels. The l= 2 level has possible ml values
of ml={−2,−1, 0, 1, 2}, and thus in a magnetic field B what was a single level is now 5 individual
levels. For l=1, we have ml values of only ml={−1, 0, 1}, and the original level becomes a triplet
upon applying a magnetic field.

Before calculating anything, we can apply the dipole selection rules, which states that ml can
change by only 0,±1. This means that, for example, from the l= 2, ml = 1 level an electron may
“jump” to the any of the l= 1, ml = {2, 1, 0} levels. On the other hand, from l= 2, ml = 2 level
an electron may only jump to the l=1, ml=1 level. Following these rules, we see from the figure
above that there are only 9 possible transitions allowed. Further, noting that the levels are equally
spaced, we have in fact only three different transition energies.



l=2

l=1

∆Eo

0

Eo

2

1

−1

−2

ml

0

1

−1

B=0 B �=0

Figure 2: Allowed transitions from l=2 to l=1 with a magnetic field applied.

The spacing between the levels ∆Eo is the Zeeman energy given above, ∆Eo = µBB. From our
schematic above, it is clear that the only possible transition energies in a magnetic field are the
original transition energy (no change in ml), or the original transition energy plus or minus ∆Eo
(ml changes by ±1). The original transition energy Eo is readily found from the given wavelength
λ=500 nm:

Eo = hc

λ
≈ 1.82 eV (87)

Thus, the new transition energies must be

Eo 7−→ {Eo −∆Eo, Eo, Eo + ∆Eo} = {Eo − µBB,Eo, Eo + µBB} (88)

That is, the original transition energy plus two new ones. We can easily convert these two new
energies into two new wavelengths by the energy-wavelength relationship E=hc/λ. However, this
does require some numerical precision (i.e., carrying at least 7-8 digits in your calculations, and
knowing the requisite constants to commensurate precision), and it is somewhat easier to simply
calculate the change in energy by itself. Since we know the energy changes by ±∆Eo, using the
formula given we have

∣∣∆λ∣∣ = λ2∆Eo
hc

= λ2µBB

hc
≈ 0.043 nm (89)

The shift in energy of ∆Eo implies a shift in wavelength of ∆λ ≈ 0.043 nm, meaning the new
transitions must be at the original wavelength λ plus or minus ∆λ:

λ 7−→ {λ−∆λ, λ, λ+ ∆λ} = {679.957, 680.000, 680.043} nm (90)



17. By considering the visible spectrum of hydrogen and He+, show how you could determine
spectroscopically if a sample of hydrogen was contaminated with helium. (Hint: look for differences
in the visible emission lines, λ≈390∼750 nm. A difference of 10 nm is easily measured.)

Solution: We know the energies in a hydrogen atom are just En=(−13.6 eV) /n2 for a given level
n. For the He+ ion, the only real difference is the extra positive charge in the nucleus. If we have
Z positive charges in the nucleus, the energies become En =(−13.6 eV)Z2/n2. For Z = 2, we just
end up multiplying all the energies by a factor 4. The questions are: does this lead to any new
radiative transitions, are they in the visible range, and are they well-separated enough? We can
just list the energy levels for the two systems and see what we come up with.

We already know that the visible transitions in Hydrogen occur when excited states relax to the
n= 2 level. Thus, we can probably find a new transition for He+ by just considering the first few
higher levels above n=2. We only need one new spectral line to be able to find He+, so we may as
well just consider a few transitions at first and see if we get lucky.

H He+

n En (eV) En (eV)
1 −13.6 −13.6 · 4
2 −13.6 · 1

4 −13.6
3 −13.6 · 1

9 −13.6 · 4
9

4 −13.6 · 1
16 −13.6 · 1

4
5 −13.6 · 1

25 −13.6 · 4
25

We see a couple of things already. The n = 2 state for He+ happens to accidentally have the
same energy as the n= 1 state for H, likewise for the n= 4 state for He+ and the n= 2 state for
H. That means that we can’t just pick transitions at random, some of them will accidentally have
the same energy. In particular, the even numbers will always match up with an existing H transition.

However, the n = 3 state for He+ has the curious fraction 4/9 in it, which can’t possibly occur
for H. Transitions into the n = 3 state should yield unique energies. Let’s compute the visible
transitions in hydrogen H, since there are only a few, and see if some He+ transitions stick out in
the in-between wavelengths:

H transition λH (nm) He+ transition λHe+ (nm)
3→ 2 656 4→ 3 469
4→ 2 486 3→ 2 164
5→ 2 434
6→ 2 410

Already with just the 4 → 3 transition in He+, we have an expected emission (or absorption) at



469 nm, a full 17 nm from the nearest H line, and well in the visible range to boot (a nice pretty
blue). Should be easy to pick out!


