PH 253 Exam III

Solve 4 of the 6 problems below. All problems have equal weight.

1. A long time ago, in a galaxy far, far away, electric charge had not yet been invented, and atoms were held together by gravitational forces. Find the equivalent of the Bohr radius for a gravitationally bound atom symbolically, and then make a numerical estimate.

Note that the Bohr radius for an electrically-bound atom is $a_{o}=4 \pi \epsilon_{o} \hbar^{2} / m_{e} e^{2}$. You should be able to find the correct result by comparing the electric and gravitational potential energies below and making the appropriate substitutions.

$$
\begin{equation*}
U_{e}=-\frac{e^{2}}{4 \pi \epsilon_{o} r} \quad U_{g}=-\frac{G m_{p} m_{e}}{r} \tag{1}
\end{equation*}
$$

here m_{e} is the electron mass, m_{p} the proton mass, and $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ is the gravitational constant. Dimensional analysis may be a good double check.
2. Energetics of diatomic systems An expression for the potential energy of two neutral atoms as a function of their separation r is given by the Morse potential,

$$
\begin{equation*}
P E=P_{o}\left[1-e^{-a\left(r-r_{o}\right)}\right]^{2} \tag{2}
\end{equation*}
$$

Find the equilibrium spacing and dissociation energy. Note: Equilibrium is characterized by $d U / d r=0$. The dissociation energy is defined as the amount of energy required to take the system from equilibrium at $r=r_{o}$ to complete breakup for $r \rightarrow \infty$
3. A hydrogen atom is in the $n=6$ state. (a) Counting all the possible paths, how many different photon energies can be emitted if the atom ends up in the ground state ($n=1$)? (b) Suppose only $\Delta n=1$ transitions were allowed. How many different photon energies would be emitted?
4. A hydrogen atom is in the $n=2, l=1, m_{l}=0$ state, with a radial wave function

$$
\begin{equation*}
R(r)=\frac{1}{\sqrt{3}\left(2 a_{o}\right)^{3 / 2}} \frac{r}{a_{o}} e^{-r / 2 a_{o}} \tag{3}
\end{equation*}
$$

(a) What is the most probable radius to find the electron? (b) What is the energy of the electron in this state? The radial version of Schrödinger's equation is below, should you need it.

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}\right)+\left(-\frac{e^{2}}{4 \pi \epsilon_{o} r}+\frac{l(l+1) \hbar^{2}}{2 m r^{2}}\right) R(r)=E R(r) \tag{4}
\end{equation*}
$$

5. Compute the change in wavelength of the $2 p \rightarrow 1 s$ photon when a hydrogen atom is placed in a magnetic field of 2.00 T (neglect spin). You may find the following relationship useful:

$$
\begin{equation*}
|\Delta \lambda|=\left|\frac{d \lambda}{d E}\right| \Delta E=\frac{h c}{E^{2}} \Delta E=\frac{\lambda^{2}}{h c} \Delta E \tag{5}
\end{equation*}
$$

For convenience, also note that $e \hbar / 2 m_{e}=\mu_{B} \approx 57.9 \mu \mathrm{eV} / \mathrm{T}$.
6. Explain why each of the following sets of quantum numbers (n, l, m_{l}, m_{s}) is not permitted for hydrogen:

$$
\begin{aligned}
& \left(3,3,-1,+\frac{1}{2}\right) \\
& \left(7,3,+4,-\frac{1}{2}\right) \\
& \left(4,1,+1, \frac{3}{2}\right) \\
& \left(3,-2,+2,+\frac{1}{2}\right)
\end{aligned}
$$

Constants:
$k_{e} \equiv 1 / 4 \pi \epsilon_{O}=8.98755 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}$
$\epsilon_{o}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$
$e=1.60218 \times 10^{-19} \mathrm{C}$
$h=6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.1357 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
$\hbar=\frac{h}{2 \pi} \quad h c=1239.84 \mathrm{eV} \cdot \mathrm{nm}$
$\mu_{B}=e \hbar / 2 m_{e}=9.274009 \mathrm{~J} / \mathrm{T} \approx 57.9 \mu \mathrm{eV} / \mathrm{T}$
$k_{B}=1.38065 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}=8.6173 \times 10^{-5} \mathrm{eV} \cdot \mathrm{K}^{-1}$

$$
c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$m_{e}=9.10938 \times 10^{-31} \mathrm{~kg} \quad m_{e} c^{2}=510.998 \mathrm{keV}$
$m_{p}=1.67262 \times 10^{-27} \mathrm{~kg} \quad m_{p} c^{2}=938.272 \mathrm{MeV}$

Schrödinger
$i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \Psi+V(x) \Psi \quad$ time-dep, 1D
$E \psi=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi+V(x) \psi \quad$ time-indep, 1D
$\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1 \quad 1 \mathrm{D}$
$P($ in $[x, x+d x])=|\psi(x)|^{2} \quad 1 \mathrm{D}$
$\int_{0}^{\infty}|\psi(r)|^{2} 4 \pi r^{2} d r=1 \quad 3 \mathrm{D}$
$P($ in $[r, r+d r])=4 \pi r^{2}|\psi(r)|^{2} \quad 3 \mathrm{D}$
$\int_{0}^{\infty}|R(r)|^{2} r^{2} d r=1 \quad$ radial only
$P($ in $[r, r+d r])=r^{2}|\psi(r)|^{2} \quad$ radial only
$\left\langle x^{n}\right\rangle=\int_{-\infty}^{\infty} x^{n} P(x) d x \quad 1 \mathrm{D}$
$\left\langle r^{n}\right\rangle=\int_{0}^{\infty} r^{n} P(r) d r \quad 3 \mathrm{D}$
$\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$

Basic Equations:

$\overrightarrow{\mathbf{F}}_{\text {net }}=m \overrightarrow{\mathbf{a}}$ Newton's Second Law

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\mathrm{centr}} & =-\frac{m v^{2}}{r} \hat{\mathbf{r}} \text { Centripetal } \\
\overrightarrow{\mathbf{F}}_{12} & =k_{e} \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{\mathbf{r}}_{12}=q_{2} \overrightarrow{\mathbf{E}}_{1} \quad \overrightarrow{\mathbf{r}}_{12}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2} \\
\overrightarrow{\mathbf{E}}_{1} & =\overrightarrow{\mathbf{F}}_{12} / q_{2}=k_{e} \frac{q_{1}}{r_{12}^{2}} \hat{\mathbf{r}}_{12} \\
\overrightarrow{\mathbf{F}}_{B} & =q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}} \\
0 & =a x^{2}+b x^{2}+c \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Oscillators

$$
\begin{aligned}
& E=\left(n+\frac{1}{2}\right) h f \\
& E=\frac{1}{2} k A^{2}=\frac{1}{2} \omega^{2} m A^{2}=2 \pi^{2} m f^{2} A^{2} \\
& \omega=2 \pi f=\sqrt{k / m}
\end{aligned}
$$

Approximations, $x \ll 1$

$$
\begin{aligned}
(1+x)^{n} & \approx 1+n x+\frac{1}{2} n(n+1) x^{2} \quad \tan x \approx x+\frac{1}{3} x^{3} \\
e^{x} & \approx 1+x+\frac{1}{2} x \quad \sin x \approx x-\frac{1}{6} x^{3} \quad \cos x \approx 1-\frac{1}{2} x^{2}
\end{aligned}
$$

E \& M

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{12} & =k_{e} \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{\mathbf{r}}_{12}=q_{2} \overrightarrow{\mathbf{E}}_{1} \quad \overrightarrow{\mathbf{r}}_{12}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2} \\
\overrightarrow{\mathbf{E}}_{1} & =\overrightarrow{\mathbf{F}}_{12} / q_{2}=k_{e} \frac{q_{1}}{r_{12}^{2}} \hat{\mathbf{r}}_{12} \\
\overrightarrow{\mathbf{F}}_{B} & =q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}
\end{aligned}
$$

Misc Quantum/Relativity

$$
\begin{aligned}
E^{2} & =p^{2} c^{2}+m^{2} c^{4}=\left(\gamma m c^{2}\right)^{2} \\
E & =h f \quad p=h / \lambda=E / c \quad \lambda f=c \quad \text { photons } \\
\lambda_{f}-\lambda_{i} & =\frac{h}{m_{e} c}(1-\cos \theta) \quad \text { Compton } \\
\lambda & =\frac{h}{|\overrightarrow{\mathbf{p}}|}=\frac{h}{\gamma m v} \approx \frac{h}{m v} \\
\Delta x \Delta p & \geq \frac{h}{4 \pi} \quad \Delta E \Delta t \geq \frac{h}{4 \pi} \\
e V_{\text {stopping }} & =K E_{\text {electron }}=h f-\varphi=h f-W
\end{aligned}
$$

Bohr

$$
\begin{aligned}
E_{n} & =-13.6 \mathrm{eV}\left(Z^{2} / n^{2}\right) \quad Z \text { protons, } 1 \mathrm{e}^{-} \\
\Delta E & =-13.6 \mathrm{eV}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)=h f \\
L=m v r & =n \hbar \\
r_{n} & =\frac{4 \pi \epsilon_{o} \hbar^{2}}{m_{e} e^{2}} n^{2}=a_{o} n^{2} \\
v^{2} & =\frac{n^{2} \hbar^{2}}{m_{e}^{2} r^{2}}=\frac{k_{e} e^{2}}{m_{e} r}
\end{aligned}
$$

Quantum Numbers

$$
\begin{aligned}
l & =0,1,2, \ldots,(n-1) & & L^{2}=l(l+1) \hbar^{2} \\
m_{l} & =-l,(-l+1), \ldots, l & & L_{z}=m_{l} \hbar \\
m_{s} & =- \pm \frac{1}{2} \quad S_{z}=m_{s} \hbar & &
\end{aligned}
$$

$$
\text { dipole transitions: } \Delta l= \pm 1, \Delta m_{l}=0, \pm 1, \Delta m_{s}=0
$$

Calculus of possible utility:

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\iint^{\int} \sin a x d x & =-\frac{1}{a} \cos a x+C \quad \int \cos a x d x=\frac{1}{a} \sin a x+C \\
\int_{0}^{\infty} x^{n} e^{-a x} d x & =\frac{n!}{a^{n+1}} \int_{0}^{\infty} \int^{\infty} x^{4} e^{-a x^{2}} d x=\frac{3}{8} \sqrt{\frac{\pi}{a^{5}}} \\
\int_{0}^{\infty} x^{2} e^{-a x^{2}} d x & =\frac{1}{4} \sqrt{\frac{\pi}{a^{3}}} \int_{0}^{\infty} x e^{-a x^{2}} d x=0 \\
\int_{-\infty}^{\infty} x^{3} e^{-a x^{2}} d x & =\int_{0}^{\infty}
\end{aligned}
$$

