PH 253 Exam II Makeup

Instructions

I. Solve three of the six problems below. All problems have equal weight.
2. Clearly mark your which problems you have chosen.
3. Do your work on separate sheets. Staple them to this exam paper when you are finished.
4. You are allowed i sheet of standard $8.5 \times$ I I in paper and a calculator.
I. The wavefunction of a particle in a double slit experiment with slit spacing d and slit width $w<d$ (w, d both positive quantities) in the plane of the slits is described by

$$
\psi(x)=\left\{\begin{array}{ll}
C & -\frac{d}{2}-\frac{w}{2} \leqslant x \leqslant-\frac{d}{2}+\frac{w}{2} \quad \text { (slit a) } \tag{I}\\
C & \frac{d}{2}-\frac{w}{2} \leqslant x \leqslant \frac{d}{2}+\frac{w}{2} \\
0 & \text { otherwise }
\end{array}\right. \text { (slit b) }
$$

(a) Determine the normalization constant C .
(b) Determine $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ in the limit $w \ll$ d, i.e., ignore any terms of order w / d and higher in the end result.
(c) Again for $w \ll d$, find the uncertainty in position $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$.
2. The Schrödinger equation for a simple harmonic oscillator of mass m can be written

$$
\begin{equation*}
-a^{4} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}+x^{2} \psi=\frac{2 \mathrm{E}}{\mathrm{C}} \psi \tag{2}
\end{equation*}
$$

where $a^{4}=\hbar^{2} / m C, C$ is the force constant, and E the energy. ${ }^{\text {i }}$
(a) Below are the wave functions for the first two states; find their energies in terms of $\hbar \omega_{0}$.
(b) Suggest a general formula for energy the $\boldsymbol{n}^{\text {th }}$ state. How does it differ from Planck's hypothesis for the energy of his oscillators?

$$
\begin{aligned}
& \psi_{0}=\left(\frac{1}{a \sqrt{\pi}}\right)^{1 / 2} e^{-x^{2} / 2 a^{2}} \\
& \psi_{1}=\left(\frac{1}{2 a \sqrt{\pi}}\right)^{1 / 2} 2\left(\frac{x}{a}\right) e^{-x^{2} / 2 a^{2}}
\end{aligned}
$$

To save you some time, we note $\frac{d}{d x}\left(e^{-x^{2} / 2 a^{2}}\right)=-\frac{x}{a^{2}} e^{-x^{2} / 2 a^{2}}$ and $\frac{d^{2}}{d x^{2}}\left(e^{-x^{2} / 2 a^{2}}\right)=\frac{x^{2}-a^{2}}{a^{4}} e^{-x^{2} / 2 a^{2}}$
3. The molecular bonding in the compound NaCl is predominantly ionic, and to a good approximation we can consider a sodium chloride molecule as consisting of two units - an Na^{+}ion and a Cl^{-}ion bound together. Assuming an electrostatic attraction and a power-law repulsion between the ions, their potential energy as a function of ion spacing has the form

[^0]\[

$$
\begin{equation*}
V(r)=-\frac{k e^{2}}{r}+\frac{A}{r^{n}} \tag{3}
\end{equation*}
$$

\]

(a) Find the equilibrium spacing r_{o}.
(b) Find the potential energy at this separation, $V_{\min }$.
(c) Find the effective "spring constant" for the molecule, assuming small deviations from r_{o}. One way to do this is to find the second derivative of $V(r)$ at $r=r_{o} .\left[(n-1) k e^{2} / r_{o}^{3}\right]$
4. (a) Using the Bohr model, what wavelength of photon is emitted when an electron in a hydrogen atom makes a transition from the 3 d to 2 p state?
(b) Show that in the presence of a magnetic field, the $3 \mathrm{~d} \rightarrow 2 p$ transition in hydrogen appears as three spectral lines. You may ignore spin, and assume only dipole transitions will occur (see formula sheet).
5. By considering the visible spectrum of hydrogen and He^{+}, show how you could determine spectroscopically if a sample of hydrogen was contaminated with helium. (Hint: look for differences in the visible emission lines, $\lambda \approx 390 \sim 750 \mathrm{~nm}$. A difference of 10 nm is easily measured.)
6. Find the most probable radius and the expected value of the radial position $\langle r\rangle$ of an electron in the $2 p$ state.

$$
\begin{equation*}
\psi_{2 p}=\frac{1}{\sqrt{3}\left(2 a_{o}\right)^{3 / 2}} \frac{r}{a_{o}} e^{-r / 2 a_{o}} \tag{4}
\end{equation*}
$$

where a_{o} is the Bohr radius, $a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}=0.529 \times 10^{-10} \mathrm{~m}$. Make use of the integrals given on the formula sheet.

Constants:

$$
\begin{aligned}
\mathrm{N}_{\mathrm{A}} & =6.022 \times 10^{23} \text { things } / \mathrm{mol} \\
\mathrm{k}_{\mathrm{e}} & \equiv 1 / 4 \pi \epsilon_{\mathrm{o}}=8.98755 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2} \\
\epsilon_{\mathrm{o}} & =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\
\mu_{\mathrm{o}} & \equiv 4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
e & =1.60218 \times 10^{-19} \mathrm{C} \\
\mathrm{~h} & =6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.1357 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s} \\
\hbar & =\frac{\mathrm{h}}{2 \pi} \quad \mathrm{hc}=1239.84 \mathrm{eV} \cdot \mathrm{~nm} \\
\mathrm{k}_{\mathrm{B}} & =1.38065 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}=8.6173 \times 10^{-5} \mathrm{eV} \cdot \mathrm{~K}^{-1} \\
\mathrm{c} & =\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
\mathrm{~m}_{e} & =9.10938 \times 10^{-31} \mathrm{~kg} \quad \mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2}=510.998 \mathrm{keV} \\
\mathrm{~m}_{\mathrm{p}} & =1.67262 \times 10^{-27} \mathrm{~kg} \quad \mathrm{~m}_{\mathrm{p}} \mathrm{c}^{2}=938.272 \mathrm{MeV} \\
\mathrm{~m}_{\mathrm{n}} & =1.67493 \times 10^{-27} \mathrm{~kg} \quad \mathrm{~m}_{\mathrm{n}} \mathrm{c}^{2}=939.565 \mathrm{MeV}
\end{aligned}
$$

Schrödinger

$$
\begin{aligned}
& i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \Psi+V(x) \Psi \\
& E \psi=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi+V(x) \psi \\
& \int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1 \quad P(\text { in }[x, x+d x])=|\psi(x)|^{2} \quad \text { ID } \\
& \int_{0}^{\infty}|\psi(r)|^{2} 4 \pi r^{2} d r=1 \quad P(\text { in }[r, r+d r])=4 \pi r^{2}|\psi(r)|^{2} \quad{ }_{3} D \\
& \left\langle x^{n}\right\rangle=\int_{-\infty}^{\infty} x^{n} P(x) d x \quad \text { ID } \quad\left\langle r^{n}\right\rangle=\int_{0}^{\infty} r^{n} P(r) d r \quad{ }^{n} D \\
& \Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}
\end{aligned}
$$

Basic Equations:

$$
\begin{aligned}
\overrightarrow{\mathrm{F}}_{\text {net }} & =\mathrm{m} \overrightarrow{\mathrm{a}} \text { Newton's Second Law } \\
\overrightarrow{\mathrm{F}}_{\text {centr }} & =-\frac{\mathrm{m} v^{2}}{\mathrm{r}} \hat{\mathrm{r}} \text { Centripetal } \\
\overrightarrow{\mathrm{F}}_{12} & =\mathrm{k}_{\mathrm{e}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}^{2}} \hat{\mathrm{r}}_{12}=\mathrm{q}_{2} \overrightarrow{\mathrm{E}}_{1} \quad \overrightarrow{\mathrm{r}}_{12}=\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2} \\
\overrightarrow{\mathrm{E}}_{1} & =\overrightarrow{\mathrm{F}}_{12} / \mathrm{q}_{2}=\mathrm{k}_{\mathrm{e}} \frac{\mathrm{q}_{1}}{\mathrm{r}_{12}^{2}} \hat{\mathrm{r}}_{12} \\
\overrightarrow{\mathrm{~F}}_{\mathrm{B}} & =\mathrm{q} \vec{v} \times \overrightarrow{\mathrm{B}} \\
0 & =\mathrm{ax} x^{2}+\mathrm{b} x^{2}+\mathrm{c} \Longrightarrow x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
\end{aligned}
$$

Oscillators

$$
\begin{aligned}
& E=\left(n+\frac{1}{2}\right) h f \\
& E=\frac{1}{2} k A^{2}=\frac{1}{2} \omega^{2} m A^{2}=2 \pi^{2} m f^{2} A^{2} \\
& \omega=2 \pi f=\sqrt{k / m}
\end{aligned}
$$

Approximations, $x \ll 1$

$$
\begin{aligned}
(1+x)^{n} & \approx 1+n x+\frac{1}{2} n(n+1) x^{2} \quad \tan x \\
e^{x} & \approx 1+x+\frac{1}{2} x \quad x^{3} \\
\quad \sin x & \approx x-\frac{1}{6} x^{3} \quad \cos x \approx 1-\frac{1}{2} x^{2}
\end{aligned}
$$

Misc Quantum

$$
\begin{aligned}
E & =h f \quad p=h / \lambda=E / c \quad \lambda f=c \quad \text { photons } \\
\lambda_{f}-\lambda_{i} & =\frac{h}{m_{e} c}(1-\cos \theta) \\
\lambda & =\frac{h}{|\vec{p}|}=\frac{h}{\gamma m v} \approx \frac{h}{m v} \\
\Delta x \Delta p & \geqslant \frac{h}{4 \pi} \quad \Delta E \Delta t \geqslant \frac{h}{4 \pi} \\
e V_{\text {stopping }} & =K E_{\text {electron }}=h f-\varphi=h f-W
\end{aligned}
$$

Bohr

$$
\begin{aligned}
\mathrm{E}_{\mathrm{n}} & =-13.6 \mathrm{eV} / \mathrm{n}^{2} \quad \text { Hydrogen } \\
\mathrm{E}_{\mathrm{n}} & =-13.6 \mathrm{eV}\left(\mathrm{Z}^{2} / \mathrm{n}^{2}\right) \quad \mathrm{Z} \text { protons, } 1 \mathrm{e}^{-} \\
\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}} & =-13.6 \mathrm{eV}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)=\mathrm{hf} \\
\mathrm{~L}=\mathrm{m} v \mathrm{r} & =n \hbar \\
v^{2} & =\frac{n^{2} \hbar^{2}}{m_{e}^{2} \mathrm{r}^{2}}=\frac{k_{e} e^{2}}{m_{e} r}
\end{aligned}
$$

Quantum Numbers

$$
\begin{aligned}
\mathrm{l} & =0,1,2, \ldots,(\mathrm{n}-1) & \mathrm{L}^{2}=l(l+1) \hbar^{2} \\
\mathrm{~m}_{\mathrm{l}} & =-l,(-l+1), \ldots, l & \mathrm{~L}_{z}=\mathrm{m}_{\mathrm{l}} \hbar \\
\mathrm{~m}_{\mathrm{s}} & =- \pm \frac{1}{2} \quad \mathrm{~S}_{z}=\mathrm{m}_{\mathrm{s}} \hbar & \mathrm{~S}^{2}=\mathrm{s}(\mathrm{~s}+1) \hbar^{2}
\end{aligned}
$$

dipole transitions: $\Delta \mathrm{l}= \pm 1, \Delta \mathrm{~m}_{\mathrm{l}}=0, \pm 1, \Delta \mathrm{~m}_{\mathrm{s}}=0$

$$
\begin{aligned}
\mu_{\mathrm{s} z} & = \pm \mu_{\mathrm{B}} \\
\vec{\mu}_{\mathrm{s}} & =2 \overrightarrow{\mathrm{~S}} \mu_{\mathrm{B}} \\
\mathrm{E}_{\mu} & =-\vec{\mu} \cdot \overrightarrow{\mathrm{B}} \\
\mathrm{~J}^{2} & =\mathfrak{j}(\mathfrak{j}+1) \hbar^{2} \quad \mathfrak{j}=l \pm \frac{1}{2} \\
J_{z} & =m_{j} \hbar \quad m_{j}=-j,(-j+1), \ldots, j
\end{aligned}
$$

Calculus of possible utility:

$$
\begin{aligned}
\int \frac{1}{x} d x & =\ln x+c \\
\int u d v & =u v-\int v d u \\
\int \sin a x d x & =-\frac{1}{a} \cos a x+C \\
\int \cos a x d x & =\frac{1}{a} \sin a x+C \\
\frac{d}{d x} \tan x & =\sec ^{2} x=\frac{1}{\cos ^{2} x} \\
\int_{0}^{\infty} x^{n} e^{-a x} d x & =\frac{n!}{a^{n+1}} \\
\int_{0}^{\infty} x^{2} e^{-a x^{2}} d x & =\frac{1}{4} \sqrt{\frac{\pi}{a^{3}}} \\
\int_{-\infty}^{\infty} x^{3} e^{-a x^{2}} d x & =\int_{-\infty}^{\infty} x e^{-a x^{2}} d x=0 \\
\int_{0}^{\infty} x^{4} e^{-a x^{2}} d x & =\frac{3}{8} \sqrt{\frac{\pi}{a^{5}}}
\end{aligned}
$$

[^0]: ${ }^{i}$ Note $\omega_{o}=2 \pi f_{o}=\sqrt{C / m}, a=(\hbar / \sqrt{m C})^{1 / 2}=\sqrt{\hbar / m \omega_{o}}$.

