
PH 253 Exam I Solutions
1. An electron and a proton are each accelerated starting from rest through a potential difference of 10.0

million volts (107 V). Find the momentum (in MeV/c) and kinetic energy (in MeV) of each, and compare

the results with the classical expectation. Recall PE=q∆V.

Solution: The key is conservation of energy. Each particle has a charge |q| = e, and when accelerated

through a potential difference of ∆V changes its potential energy by e∆V. This must equal the change in

kinetic energy of the particle. Thus, K = e∆V = 107 eV = 1.6 × 10−12 J for both. From this, we can use

the relativistic kinetic energy expression to find the velocity, and from that the momentum. The algebraic

expressions are the same for both - the only difference between the two cases is the particle mass.

K = q∆V = (γ− 1)mc2 (1)

γ =
q∆V

mc2
+ 1 (2)

p = γmv = γm

√
1 −

1

γ2
(3)

The last expression is one of convenience – we can just solve for γ this way, rather than bothering to solve

for v. Makes no difference in the end, just saves a couple of lines of algebra. Classically, we would expect:

Kcl = q∆V =
1

2
mv2 (4)

vcl =

√
2q∆V

m
(5)

pcl = mv =
√

2mq∆V (6)

For the electron, we have:

K = 10 MeV = 1.6× 10−12 J (7)

p = 10.49 MeV/c = 5.6× 10−21 kg ·m/s (8)

Kcl = K = 10 MeV (9)

pcl = 3.20 MeV/c = 1.71× 10−21 kg ·m/s (10)

For the proton, we have

K = 10 MeV = 1.6× 10−12 J (11)

p = 137 MeV/c = 7.34× 10−20 kg ·m/s (12)

Kcl = K = 10 MeV (13)

pcl = 137 MeV/c = 7.31× 10−20 kg ·m/s (14)

For the heavier proton, a potential energy of 10 MeV only accelerates it about γ ≈ 1.01, and classical

mechanics works just fine. The same energy transferred to the much lighter electron accelerates it to γ≈20.6,

well into the relativistic regime.
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2. An electron is released from rest and falls under the influence of gravity. (a) How much power does it

radiate? (b) How much energy is lost after it falls 1 m? (Hint: P=∆K/∆t, y= 1
2gt

2.)

Solution: The power emitted by a charge e with acceleration a is

P =
e2a2

6πεoc3
(15)

In this case, under free fall the electron’s acceleration is g≈9.81 m/s2, which gives

P =
e2g2

6πεoc3
≈ 5× 10−52 W (16)

In a time t, starting from rest, an object under the influence of gravity falls a distance ∆y= 1
2gt

2. Knowing

the electron falls ∆y=1 m, the time it takes is

t =

√
2∆y

g
≈ 0.45 s (17)

Since the power dissipation is constant, the energy lost is just power times time (since P=∆E/∆t):

∆E = Pt =
e2g2

6πεoc3

√
2∆y

g
≈ 2.5× 10−52 J (18)

An utterly negligible amount. We don’t need to worry about radiation of charges accelerated by gravity.

3. An electron initially moving at constant speed v is brought to rest with uniform deceleration a lasting

for a time t=v/a. Compare the electromagnetic energy radiated during this deceleration with the electron’s

initial kinetic energy. Express the ratio in terms of two lengths, the distance light travels in time t and the

classical electron radius re=e
2/4πεomc

2.

Solution: The power emitted by a charge e with acceleration a is

P =
e2a2

6πεoc3
(19)

In this case, we know that a=v/t. The energy radiated in time t is just U=Pt, so

U = Pt =
e2v2

6πεoc3t
(20)

The ratio of this energy to the kinetic energy before deceleration is

U

K
=

1
1
2mv

2

e2v2

6πεoc3t
=

e2

3πεomc3t
(21)

Noting that the distance light travels in a time t is rl=ct and using the expression for the classical electron

radius above,

U

K
=

e2

3πεomc3t
=

e2

4πεomc2
· 4

3
· 1

ct
=

4re
3rl

(22)

4. Observer O notes that two events are separated in space and time by 600 m and 8 × 10−7 s. How fast

must observer O′ be moving relative to O in order that the events seem simultaneous?
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Solution: For the events to be simultaneous for an observer in O′, the time interval between them must be

zero: ∆t′=0. We can relate the two time intervals with the Lorentz transformation:

∆t′ = γ

(
∆t−

v∆x

c2

)
= 0 (23)

=⇒ v

c
=
c∆t

∆x
(24)

GIven ∆x=600 m and ∆t=8× 10−7 s, we find v/c=0.4.

5. A bassist taps the lowest E on her bass at 140 beats per minute during one portion of a song. What

tempo would an observer on a ship moving toward the bassist at 0.70c hear?

Solution: The time interval between taps for the stationary observer is

∆t =
1 min

140 beats
=

3

7
sec/beat (25)

The moving observer sees a dilated time interval, longer by a factor γ=1/
√

1 − v2/c2≈1.4:

∆t′ = γ∆t ≈ 0.6 sec/beat (26)

The tempo the moving observer sees is then the inverse of the time interval:

(tempo)′ =
1

∆t′
≈ 100 beats/min (27)

6. The proper lifetime of a certain particle is 100.0 ns. (a) How long does it live in the laboratory frame

if it moves at v= 0.960c? (b) How far does it travel in the laboratory during that time? (c) What is the

distance traveled in the lab according to an observer moving with the particle?

Solution: In the particle’s own frame, a proper time of ∆tp=100 ns passes. An observer in the laboratory

(which we will denote as the primed frame) is in motion relative to the particle, and thus in motion with

respect to the event of interest, the particle’s decay. The lab observer therefore sees a dilated time interval:

∆t′ = γ∆tp =
∆tp√

1 − v2/c2
≈ 357 ns (28)

According to the lab observer, then, the distance traveled is the time they observe times the relative velocity

they observe (which both frames agree on):

∆x′ = v∆t′ = γv∆t ≈ 103 m (29)

For an observer traveling with the particle, the proper time of 100 ns passes, and the relative velocity is the

same:

∆x = v∆t ≈ 28.8 m (30)

7. Two electrons leave a radioactive sample in opposite directions, each having a speed 0.67c with respect

to the sample. What is the speed of one electron relative to the other? That is, what would one electron

say the other’s speed is?
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Solution: From the point of view of one of the electrons, it is sitting still and the other is moving away

from it with the sum of the two electron’s velocities. Thus, we must use the velocity addition formula. Let

the electrons’ velocities in the sample’s reference frame be v1 and v2. The velocity of electron 2 from the

reference frame of electron 1 (which we will denote as the ‘primed’ frame) is then:

v′2 =
v1 + v2

1 + v1v2/c2
=

0.67c+ 0.67c

1 + (0.67c) (0.67c) /c2
≈ 0.925c (31)

8. A capacitor consists of two parallel rectangular plates with a vertical separation of 0.02 m. The east-west

dimension of the plates is 0.2 m, the north-south dimension is 10 cm. The capacitor has been charged by

connecting it temporarily to a battery of 300 V.

(a) How many excess electrons are on the negative plate?

(b) What is the electric field strength between the plates?

Now, give the quantities as they would be measured in a frame of reference which is moving eastward, relative

to the laboratory in which the plates are at rest, with speed 0.6c.

(c) The dimensions of the capacitor,

(d) The number of excess electrons on the negative plate,

(e) The electric field strength between the plates.

Solution: (a) The excess charge can be found from the definition of the capacitance and its specific form

for two parallel plates:

C =
Q

∆V
=
εoA

d
=⇒ Q =

εoA∆V

d
≈ 2.665−9 C ≈ 1.66× 1010 electrons (32)

Here ∆V is the potential difference applied to the battery, the area of the plates is the product of the east-

west and north-south distance, lewlns, and d is the vertical separation.

(b) The electric field strength between the plates, treating them as infinite plates, can be found in two ways:

E =
∆V

d
=
σ

ε0
=

Q

εoA
= 15, 000 V/m (33)

(c) Moving eastward, perpendicular to the direction separating the plates, we will have a contraction of the

east-west length but not the north-south length or the separation. Thus, the new dimensions of the capacitor

are

l′ew = lew/γ = lew
√

1 − v2/c2 = 0.16 m (34)

l′ns = lns = 0.1 m (35)

d′ = d = 0.02 m (36)

(d) The number of electrons per plate is the same, since charge is invariant.

(e) The electric field strength will increase, since we have the same number of electrons confined to effectively

smaller plates. The area of the plates is now a factor of gamma smaller, l′ewl
′
ns = lewlns/γ, meaning the
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charge density is a factor γ higher, and thus the electric field is also a factor of γ higher:

E′ =
σ′

εo
=
γσ

εo
= γE = 18, 750 V/m (37)
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Constants:

g ≈ 9.81 m/s2

NA = 6.022× 1023 things/mol

ke ≡ 1/4πεo = 8.98755× 109 N ·m2 ·C−2

εo = 8.85× 10−12 C2/N ·m2

µ0 ≡ 4π× 10−7 T ·m/A

e = 1.60218× 10−19 C

h = 6.6261× 10−34 J · s = 4.1357× 10−15 eV · s

 h =
h

2π

kB = 1.38065× 10−23 J ·K−1 = 8.6173× 10−5 eV ·K−1

c =
1

√
µ0ε0

= 2.99792× 108 m/s

hc = 1240 eV · nm

me = 9.10938× 10−31 kg mec
2 = 510.998 keV

mp = 1.67262× 10−27 kg mpc
2 = 938.272 MeV

Quadratic formula:

0 = ax2 + bx2 + c =⇒ x =
−b±

√
b2 − 4ac

2a

Basic Equations:

~E = σ/ε0 capacitor

C = ε0A/d

~Fnet = m~a Newton’s Second Law

~Fcentr = −
mv2

r
r̂ Centripetal

~F12 = ke
q1q2

r212
r̂12 = q2

~E1 ~r12=~r1 −~r2

~E1 = ~F12/q2 = ke
q1

r212
r̂12

~FB = q~v × ~B

0 = ax2 + bx2 + c =⇒ x =
−b±

√
b2 − 4ac

2a

E & M

~F12 = ke
q1q2

r212
r̂12 = q2

~E1 ~r12=~r1 −~r2

~E1 = ~F12/q2 = ke
q1

r212
r̂12

~FB = q~v × ~B

Oscillators & waves

E =
1

2
kA2 =

1

2
ω2mA2 = 2π2mf2A2

ω = 2πf =
√
k/m

c = λf

Approximations, x�1

(1 + x)
n ≈ 1 + nx+

1

2
n (n+ 1) x2 ex ≈ 1 + x+

1

2
x

sin x ≈ x− 1

6
x3 cos x ≈ 1 −

1

2
x2

Radiation

Prad =
q2a2

6πεoc3
total emitted power, E and B fields

Relativity

γ =
1√

1 − v2

c2

∆t′moving = γ∆tstationary = γ∆tp

L′moving =
Lstationary

γ
=
Lp

γ

x′ = γ (x− vt) x = γ (x′ + vt′)

t′ = γ
(
t−

vx

c2

)
t = γ

(
t′ +

vx′

c2

)
vobj =

v+ v′obj

1 +
vv′obj

c2

v′obj =
vobj − v

1 −
vvobj

c2

KE = (γ− 1)mc2 =
√
m2c4 + c2p2 −mc2

Erest = mc
2

p = γmv

E2 = p2c2 +m2c4 =
(
γmc2

)2
Calculus of possible utility:

∫
1

x
dx = ln x+ c∫
udv = uv−

∫
vdu

Vectors:

|~F| =
√
F2x + F2y magn θ = tan−1

[
Fy

Fx

]
dir
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