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Instructions

1. Solve 7 of the problems below. All problems have equal weight.

2. Clearly mark your which problems you have chosen.

3. Do your work on separate sheets. Staple them to this exam paper.

4. You are allowed 2 sheet of standard 8.5x11 in paper and a calculator.

1. Determine the maximum scattering angle in a Compton experiment for which the scattered

photon can produce a positron-electron pair. Hint: twice the electron’s rest energymec
2 is required

of the incident photon for pair production.

2. In a crystal, the atoms are a distance L apart; that is, each atom must be localized to within a

distance of at most L. (a) What is the minimum uncertainty in the momentum of the atoms of a

solid that are 0.20 nm apart? (b) What is the average kinetic energy of such an atom of mass 65 u?

(See formula sheet.) (c) What would a collection of such atoms contribute to the internal energy

of a typical solid, such as copper? (d) Is this contribution important at room temperature?

3. A particle is represented by the following wave equation:

ψ(x) =



0 x < −L/2

C
(
2x
L + 1

)
−L/2 < x < 0

C
(
−2x
L + 1

)
0 < x < +L/2

0 x > +L/2

(1)

(a) Use the normalization condition to find C. (b) Evaluate the probability to find the particle in

an interval of width 0.010L at x=L/4 (that is, between x= 0.245L and x= 0.255L. No integral is

necessary for this calculation.) (c) Evaluate the probability to find the particle between x=0 and

x=+L/4. (d) Find the average value of x and the rms value of x: xrms=
√
〈x2〉.

4. If an elementary particle of mass m has a very short lifetime τ, it is found that repeated

measurements of m give results that are spread out over a range ∆m. One then calculates τ from

the relationship

τ∆
(
mc2

)
≈  h or τ ≈

 h

∆ (mc2)
(2)



so that the shorter the lifetime the more easily it is measured. (a) Why is this formula true?

Justify it using ideas based on the uncertainty principle. (b) Delta particles, m≈1232 MeV, have

∆(mc2)=110 MeV. What is their lifetime?

5. An electron is trapped in an infinitely deep one-dimensional well of width 0.251 nm. Initially,

the electron occupies the n = 4 state. (a) Suppose the electron jumps to the ground state with

the accompanying emission of a photon. What is the energy of the photon? (b) Find the energies

of other photons that might be emitted if the electron takes other paths between n= 4 and the

ground state.

6. An electron is in the n= 5 state of hydrogen. Within the Bohr model, to what states can the

electron make transitions while emitting photons, and what are the energies of the emitted photons

(starting from n=5 only)?

7. Find the most probable radius and the expected value of the radial position 〈r〉 of an electron

in the 2p state.

ψ2p =
1

√
3 (2ao)

3/2

r

ao
e−r/2ao (3)

where a0=
4πε0 h2

mee2
=0.529×10−10 m is the Bohr radius. Note the integrals on the formula sheet.

8. (a) List the 6 possible sets of quantum numbers (n, l,ml,ms) of a 2p electron. (b) Suppose

we have an atom such as carbon, which has two 2p electrons. Ignoring the Pauli principle, how

many different possible combinations of the two electrons are there? (c) How many of the possible

combinations of part (b) are eliminated by applying the Pauli principle? (d) Suppose carbon is in

an excited state with configuration 2p13p1. Does the Pauli principle restrict the choice of quantum

numbers for the electrons? How many different sets of quantum numbers are possible for the two

electrons?

9. The wavelength of maximum intensity in the solar spectrum is about 500 nm, as some of you

will verify in PH255. Assuming the sun radiates as a black body, compute its surface temperature.

10. Pauli exclusion. What are the energies of the photons that would be emitted when the

four-electron system in the figure on the next page returns to its ground state?

11. Three non-interacting particles are in their ground state in an infinite square well;i see the

figure on the next page. What happens when a magnetic field is turned on which interacts with the

spins of the particles? Consider separately the two possible spins for the highest energy electron.

Draw the new levels and particles (with spin).

iRecall the energies in an infinite square well are E=n2h2/8ma2
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either or

n = 1

n = 2

n = 3

Left, problem 10: A system of four electrons with three energy levels. Right, problem 11: A system of three electrons in
an infinite square well.



Constants:

NA = 6.022× 1023 things/mol

ke ≡ 1/4πεo = 8.98755× 109 N ·m2 ·C−2

εo = 8.85× 10−12 C2/N ·m2

µ0 ≡ 4π× 10−7 T ·m/A

e = 1.60218× 10−19 C

h = 6.6261× 10−34 J · s = 4.1357× 10−15 eV · s

 h =
h

2π
hc = 1239.84eV · nm

kB = 1.38065× 10−23 J ·K−1 = 8.6173× 10−5 eV ·K−1

c =
1

√
µ0ε0

= 2.99792× 108 m/s

me = 9.10938× 10−31 kg mec
2 = 510.998keV

mp = 1.67262× 10−27 kg mpc
2 = 938.272MeV

mn = 1.67493× 10−27 kg mnc
2 = 939.565MeV

u = 1.66054× 10−27 kg uc2 = 931.494MeV

Schrödinger

i h
∂Ψ

∂t
= −

 h2

2m

d2

dx2
Ψ+V(x)Ψ time-dep, 1D

Eψ = −
 h2

2m

d2

dx2
ψ+V(x)ψ time-indep, 1D∫∞

−∞ |ψ(x)|2 dx = 1 P(in [x,x+dx]) = |ψ(x)|2 1D∫∞
0

|ψ(r)|2 4πr2 dr = 1 P(in [r, r+dr]) = 4πr2|ψ(r)|2 3D

〈xn〉 =
∫∞
−∞ xnP(x)dx 1D 〈rn〉 =

∫∞
0
rnP(r)dr 3D

∆x =
√
〈x2〉− 〈x〉2

Basic Equations:
~Fnet =m~a Newton’s Second Law

~Fcentr = −
mv2

r
r̂ Centripetal

~F12 = ke
q1q2

r212
r̂12 = q2~E1 ~r12=~r1 −~r2

~E1 =~F12/q2 = ke
q1

r212
r̂12

~FB = q~v×~B

0 = ax2 + bx2 + c =⇒ x =
−b±

√
b2 − 4ac

2a

Oscillators

E =

(
n+

1

2

)
hf

E =
1

2
kA2 =

1

2
ω2mA2 = 2π2mf2A2

ω = 2πf =
√
k/m

Approximations, x�1

(1+ x)n ≈ 1+nx+
1

2
n (n+ 1)x2 tanx ≈ x+

1

3
x3

ex ≈ 1+ x+
1

2
x sinx ≈ x−

1

6
x3 cosx ≈ 1−

1

2
x2

E & M
~F12 = ke

q1q2

r212
r̂12 = q2~E1 ~r12=~r1 −~r2

~E1 =~F12/q2 = ke
q1

r212
r̂12

~FB = q~v×~B

Misc Quantum/Relativity

E2 = p2c2 +m2c4 =
(
γmc2

)2
E = hf p = h/λ = E/c λf = c photons

λf − λi =
h

mec
(1− cosθ) Compton

λ =
h

|~p|
=

h

γmv
≈ h

mv

∆x∆p >
h

4π
∆E∆t >

h

4π

eVstopping = KEelectron = hf−ϕ = hf−W

Bohr

En = −13.6 eV
(
Z2/n2

)
Z protons, 1 e−

∆E = −13.6 eV

(
1

n2
i

−
1

n2
f

)
= hf

L =mvr = n h

v2 =
n2  h2

m2
er

2
=
kee

2

mer

Quantum Numbers

l = 0, 1, 2, . . . , (n− 1) L2 = l(l+ 1) h2

ml = −l, (−l+ 1), . . . , l Lz =ml  h

ms = −± 1

2
Sz =ms  h

dipole transitions: ∆l = ±1,∆ml = 0,±1,∆ms = 0

Calculus of possible utility:∫
udv = uv−

∫
vdu∫

sinaxdx = −
1

a
cosax+C∫

cosaxdx =
1

a
sinax+C∫∞

0
xne−ax dx =

n!

an+1

∞∫
0

x2e−ax
2
dx =

1

4

√
π

a3

∞∫
−∞ x

3e−ax
2
dx =

∞∫
−∞ xe

−ax2 dx = 0

∞∫
0

x4e−ax
2
dx =

3

8

√
π

a5

Blackbody

Etot = σT4 σ = 5.672× 10−8 W ·m−2 ·K−4

Tλmax = 0.29× 10−2 m ·K Wien

Equantum = hf Eoscillator = hf/
(
ehf/kBT − 1

)
I(λ,T) =

(const)

λ5

[
e
hc
λkbT − 1

]−1

I(f, t) = (const) f3

[
e
hf
kbT − 1

]−1
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