# University of Alabama <br> Department of Physics and Astronomy 

## Exam 1

## Instructions

1. I will grade your best four problems. All problems have equal weight.
2. Show your work for full credit. Significant partial credit will be given.
3. Answer on separate sheets of paper, turn in all work.
4. A stick of length $L$ is at rest in a system $O$ and is oriented at an angle $\theta$ with respect to the $x$ axis. An observer in system $\mathrm{O}^{\prime}$ travels at velocity $v$ with respect to the system O along the x axis. On a recent homework problem, you were asked for the apparent angle $\theta^{\prime}$ that the stick makes with the $\chi^{\prime}$ axis according to the observer in $\mathrm{O}^{\prime}$. What is the apparent length $\mathrm{L}^{\prime}$ that the observer in $\mathrm{O}^{\prime}$ sees, in terms of given quantities? The $x$ and $x^{\prime}$ axes are parallel.
5. An atomic clock aboard a spaceship runs slow compared with an earth-based atomic clock at a rate of 1.0 second per day. What is the speed of the spaceship? Note for convenience $60 \times 60 \times 24=8.64 \times 10^{4}$.
6. At time $\mathrm{t}_{1}=0$, a boiler explodes in town A. At time $\mathrm{t}_{2}=0.0003 \mathrm{~s}$ a similar boiler explodes in town B , 150 km away from the first explosion. Show that, in a reference frame of a spaceship moving at speed greater than 0.60 c from town A toward town B, the first explosion occurs after the second.
7. An electron (charge $e$ and mass $m_{e}$ ) moves in a solid at a thermal speed of $v_{\mathrm{o}}=10^{5} \mathrm{~m} / \mathrm{s}(v \ll c)$, and after colliding with an atom it experiences a constant deceleration such that it comes to rest after traveling $\mathrm{d}=3 \times 10^{-9} \mathrm{~m}$. What fraction of the electron's initial kinetic energy is lost as radiation during the deceleration? Hint: recall from kinematics how to relate time, distance, and acceleration.
8. (a) Show that the momentum of a particle can be expressed in the concise form $p=E v / c^{2}$. (b) Given the following:

$$
\begin{aligned}
& p=\gamma \mathrm{mv}=\frac{\mathrm{mv}}{\sqrt{1-v^{2} / \mathrm{c}^{2}}} \\
& \mathrm{E}=\gamma \mathrm{mc}^{2}=\frac{\mathrm{mc}^{2}}{\sqrt{1-v^{2} / \mathrm{c}^{2}}}
\end{aligned}
$$

demonstrate that $E^{2}=p^{2} c^{2}+m^{2} c^{4}$.

## Formula Sheet

Constants:

$$
\begin{aligned}
\mathrm{g} & \approx 9.81 \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{~N}_{\mathrm{A}} & =6.022 \times 10^{23} \mathrm{things} / \mathrm{mol} \\
\mathrm{k}_{e} & \equiv 1 / 4 \pi \epsilon_{\mathrm{o}}=8.98755 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2} \\
\epsilon_{\mathrm{o}} & =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\
\mu_{0} & \equiv 4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
\mathrm{k}_{\mathrm{B}} & =1.38065 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1} \\
e & =1.60218 \times 10^{-19} \mathrm{C} \\
\mathrm{~h} & =6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
\mathrm{c} & =\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
\mathrm{hc} & =1240 \mathrm{eV} \cdot \mathrm{~nm} \\
\mathrm{~m}_{e} & =9.10938 \times 10^{-31} \mathrm{~kg} \\
\mathrm{~m}_{\mathrm{p}} & =1.67262 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

## Quadratic formula:

$$
0=a x^{2}+b x^{2}+c \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

## Basic Equations:

$$
\begin{aligned}
\overrightarrow{\mathbf{E}} & =\sigma / \epsilon_{0} \text { capacitor } \\
\mathrm{C} & =\epsilon_{0} \mathrm{~A} / \mathrm{d} \\
\overrightarrow{\mathbf{F}}_{\text {net }} & =\mathfrak{m} \overrightarrow{\mathbf{a}} \text { Newton's Second Law } \\
\overrightarrow{\mathbf{F}}_{\text {centr }} & =-\frac{\mathfrak{m} v^{2}}{\mathrm{r}} \hat{\mathbf{r}} \text { Centripetal } \\
\mathrm{K}_{\text {classical }} & =\frac{1}{2} \mathfrak{m} v^{2} \\
0 & =\mathrm{a} x^{2}+\mathrm{b} x^{2}+\mathrm{c} \Longrightarrow x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
\end{aligned}
$$

1-D classical motion:

$$
\begin{aligned}
v(\mathrm{t}) & =\frac{\mathrm{d}}{\mathrm{dt}} x(\mathrm{t}) \quad \mathrm{a}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}} v(\mathrm{t})=\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}} x(\mathrm{t}) \\
v(\mathrm{t}) & =\int_{0}^{\mathrm{t}} a d \mathrm{dt} \quad x(\mathrm{t})=\int_{0}^{\mathrm{t}} v \mathrm{dt} \\
& \downarrow \text { const. acc. } \\
x_{\mathrm{f}} & =x_{\mathrm{i}}+v_{x i} \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{x}} \mathrm{t}^{2} \\
v_{x f}^{2} & =v_{x i}^{2}+2 \mathrm{a}_{\mathrm{x}} \Delta \mathrm{x} \\
v_{\mathrm{f}} & =v_{\mathrm{i}}+\mathrm{at}
\end{aligned}
$$

## $\mathbf{E} \& \mathbf{M}$

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{12} & =\mathrm{k}_{\mathrm{e}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}^{2}} \hat{\mathbf{r}}_{12}=\mathrm{q}_{2} \overrightarrow{\mathbf{E}}_{1} \quad \overrightarrow{\mathbf{r}}_{12}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2} \\
\overrightarrow{\mathbf{E}}_{1} & =\overrightarrow{\mathbf{F}}_{12} / \mathrm{q}_{2}=\mathrm{k}_{e} \frac{\mathrm{q}_{1}}{\mathrm{r}_{12}^{2}} \hat{\mathbf{r}}_{12} \\
\overrightarrow{\mathbf{F}}_{\mathrm{B}} & =\mathrm{q} \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}} \\
\mathrm{U}_{12} & =\mathrm{k}_{e} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}} \quad \text { potential E, } 2 \text { charges }
\end{aligned}
$$

## Oscillators \& waves

$$
\begin{aligned}
E & =\frac{1}{2} k A^{2}=\frac{1}{2} \omega^{2} m A^{2}=2 \pi^{2} m f^{2} A^{2} \\
\omega & =2 \pi f=\sqrt{k / m} \\
c & =\lambda f
\end{aligned}
$$

## Approximations, $x \ll 1$

$$
\begin{aligned}
(1+x)^{n} & \approx 1+n x \quad e^{x} \\
\sin x & \approx x \quad \cos x
\end{aligned}=1-\frac{1}{2} x^{2} .
$$

## Radiation

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{rad}}=\frac{\mathrm{q}^{2} \mathrm{a}^{2}}{6 \pi \epsilon_{\mathrm{o}} \mathrm{c}^{3}} \quad \text { total emitted power, } \mathrm{E} \text { and B fields } \\
& \mathrm{E}=\int \mathrm{Pdt} \\
& \text { constant power } \Longrightarrow \quad \mathrm{E}=\mathrm{Pt}
\end{aligned}
$$

## Special Relativity

$$
\begin{aligned}
\gamma & =\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
\Delta \mathrm{t}_{\text {moving }}^{\prime} & =\gamma \Delta \mathrm{t}_{\text {stationary }}=\gamma \Delta \mathrm{t}_{\mathrm{p}} \\
\mathrm{~L}_{\text {moving }}^{\prime} & =\frac{\mathrm{L}_{\text {stationary }}}{\gamma}=\frac{\mathrm{L}_{\mathrm{p}}}{\gamma} \\
x^{\prime} & =\gamma(\mathrm{x}-v \mathrm{t}) \quad \quad \mathrm{x}=\gamma\left(\mathrm{x}^{\prime}+v \mathrm{t}^{\prime}\right) \\
\mathrm{t}^{\prime} & =\gamma\left(\mathrm{t}-\frac{v \mathrm{x}}{\mathrm{c}^{2}}\right) \quad \mathrm{t}=\gamma\left(\mathrm{t}^{\prime}+\frac{v x^{\prime}}{\mathrm{c}^{2}}\right) \\
v_{\mathrm{obj}} & =\frac{v+v_{\mathrm{obj}}^{\prime}}{1+\frac{v v_{\mathrm{obj}}^{\prime}}{\mathrm{c}^{2}}} \quad v_{\mathrm{obj}}^{\prime}=\frac{v_{\mathrm{obj}}-v}{1-\frac{v v_{\mathrm{obj}}}{c^{2}}} \\
\mathrm{KE} & =(\gamma-1) \mathrm{mc}^{2}=\sqrt{\mathrm{m}^{2} \mathrm{c}^{4}+\mathrm{c}^{2} \mathrm{p}^{2}}-\mathrm{mc}^{2} \\
\mathrm{E}_{\text {rest }} & =\mathrm{mc} c^{2} \\
\mathrm{p} & =\gamma \mathrm{m} v \\
\mathrm{E}^{2} & =\mathrm{p}^{2} \mathrm{c}^{2}+\mathrm{m}^{2} \mathrm{c}^{4}=\left(\gamma \mathrm{mc}^{2}\right)^{2}
\end{aligned}
$$

