University of Alabama
 Department of Physics and Astronomy

PH 253 / LeClair
Spring 2019

Exam 1 Solution

1. A stick of length L is at rest in a system O and is oriented at an angle θ with respect to the x axis. An observer in system O^{\prime} travels at velocity v with respect to the system O along the x axis. On a recent homework problem, you were asked for the apparent angle θ^{\prime} that the stick makes with the χ^{\prime} axis according to the observer in O^{\prime}. What is the apparent length L^{\prime} that the observer in O^{\prime} sees, in terms of given quantities? The x and x^{\prime} axes are parallel.

Solution: Let the reference frame at rest with respect to the stick be the 'unprimed' frame, with the primed frame corresponding to the observer moving at speed v relative to the stick. Since the relative motion is along the (presumed collinear) x and x^{\prime} axes, the primed observer sees distances along the χ^{\prime} axis as contracted relative to the reference frame of the stick.

In the stick's (unprimed) frame, the horizontal extent of the stick along the x axis is $L_{x}=L \cos \theta$, while the extent along the y axis is $L_{y}=\mathrm{L} \sin \theta$. For the moving observer, the x dimensions are contracted, but not the y, and thus

$$
\begin{align*}
& \mathrm{L}_{x}^{\prime}=\mathrm{L}_{x} / \gamma=\mathrm{L}_{x} \sqrt{1-\frac{v^{2}}{\mathrm{c}^{2}}} \\
& \mathrm{~L}_{y}^{\prime} \tag{1}\\
& =\mathrm{L}_{y}
\end{align*}
$$

The stationary observer sees the stick as having length $L=\sqrt{L_{x}^{2}+L_{y}^{2}}$. The moving observer sees the stick as having a length

$$
\begin{align*}
& L^{\prime}=\sqrt{\left(L_{x}^{\prime}\right)^{2}+\left(L_{y}^{\prime}\right)^{2}}=\sqrt{L_{x}^{2}\left(1-\frac{v^{2}}{c^{2}}\right)+L_{y}^{2}}=L \sqrt{1-\frac{v^{2}}{c^{2}} \cos ^{2} \theta}=L \sqrt{\frac{L_{x}^{2}}{\gamma^{2}}+L_{y}^{2}} \tag{2}\\
& L^{\prime}=L \sqrt{\frac{\cos ^{2} \theta}{\gamma^{2}}+\sin ^{2} \theta} \tag{3}
\end{align*}
$$

2. An atomic clock aboard a spaceship runs slow compared with an earth-based atomic clock at a rate of 1.0 second per day. What is the speed of the spaceship? Note for convenience $60 \times 60 \times 24=8.64 \times 10^{4}$.

Solution: The proper time t_{p} is that measured on earth, while a dilated time $t=\gamma t_{p}$ is measured on the ship. If the clock aboard the ship is 1 s per day slow, then using 1 day $=86400 \mathrm{~s}$

$$
\begin{equation*}
t-t_{p}=\gamma t_{p}-t_{p}=(\gamma-1) t_{p}=(\gamma-1)(86400 \mathrm{~s})=1 \mathrm{~s} \tag{4}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\gamma=\frac{1}{86400}+1=\frac{1}{\sqrt{1-v^{2} / c^{2}}} \tag{5}
\end{equation*}
$$

Solving for v, we find $v \approx 0.0048 \mathrm{c}$.
3. At time $t_{1}=0$, a boiler explodes in town A. At time $t_{2}=0.0003 \mathrm{~s}$ a similar boiler explodes in town B , 150 km away from the first explosion. Show that, in a reference frame of a spaceship moving at speed greater than 0.60 c from town A toward town B, the first explosion occurs after the second.

Solution: Let the ground be the unprimed frame. In this frame, the time between events $\Delta t=t_{2}-t_{1}$ is positive. Transforming to a primed frame aboard the ship,

$$
\begin{equation*}
\Delta \mathrm{t}^{\prime}=\gamma\left(\Delta \mathrm{t}-\frac{v \mathrm{x}}{\mathrm{c}^{2}}\right) \tag{6}
\end{equation*}
$$

where $x=150 \mathrm{~km}$ is the distance between the events and v is the speed of the ship. We want to find the speed v such that Δt^{\prime} is negative so the order of events is reversed. Thus,

$$
\begin{align*}
\Delta \mathrm{t}^{\prime} & =\gamma\left(\Delta \mathrm{t}-\frac{v \mathrm{x}}{\mathrm{c}^{2}}\right)>0 \tag{7}\\
\Delta \mathrm{t} & >\frac{v \chi}{\mathrm{c}^{2}} \tag{8}\\
\frac{v}{\mathrm{c}} & =\frac{\mathrm{c} \Delta \mathrm{t}}{\mathrm{x}} \approx 0.6 \tag{9}
\end{align*}
$$

Thus, for speeds $v>0.6 \mathrm{c}$, the order of events is reversed, and at $v=0.6 \mathrm{c}$ the events happen simultaneously.
4. An electron (charge e and mass m_{e}) moves in a solid at a thermal speed of $v_{o}=10^{5} \mathrm{~m} / \mathrm{s}(v \ll c)$, and after colliding with an atom it experiences a constant deceleration such that it comes to rest after traveling $\mathrm{d}=3 \times 10^{-9} \mathrm{~m}$. What fraction of the electron's initial kinetic energy is lost as radiation during the deceleration? Hint: recall from kinematics how to relate time, distance, and acceleration.
5. Start with kinematics to find the acceleration in terms of the initial velocity and distance:

$$
\begin{align*}
\mathrm{d} & =v_{\mathrm{o}} \mathrm{t}-\frac{1}{2} \mathrm{at}^{2}=\frac{v_{\mathrm{o}}^{2}}{\mathrm{a}}-\frac{1}{2} \mathrm{a} \frac{v_{\mathrm{o}}^{2}}{2 \mathrm{a}} \tag{10}\\
\Longrightarrow \quad \mathrm{a} & =\frac{v_{\mathrm{o}}^{2}}{\mathrm{~d}} \tag{11}
\end{align*}
$$

We also know $v_{\mathrm{f}}=0=\nu_{\mathrm{o}}-\mathrm{at}$, so $|\mathrm{t}|=\nu_{\mathrm{o}} / \mathrm{a}$:

$$
\begin{equation*}
|\mathrm{t}|=\frac{v_{\mathrm{o}}}{\mathrm{a}}=\frac{2 v_{\mathrm{o}} \mathrm{~d}}{v_{\mathrm{o}}^{2}}=\frac{2 \mathrm{~d}}{v_{\mathrm{o}}} \tag{12}
\end{equation*}
$$

From the Larmor formula we get the radiated power P, and from that the radiated energy $E=P t$.

$$
\begin{equation*}
P=\frac{q^{2} a^{2}}{6 \pi \epsilon_{\mathrm{o}} \mathrm{c}^{3}}=\frac{\mathrm{q}^{2} v_{\mathrm{o}}^{4}}{6 \pi \epsilon_{\mathrm{o}} \mathrm{c}^{3} \cdot 4 \mathrm{~d}^{2}} \tag{13}
\end{equation*}
$$

The desired ratio is $E / K=P t / K$. With the electron's charge being $q=e$,

$$
\begin{equation*}
\frac{\mathrm{E}}{\mathrm{~K}}=\mathrm{Pt} \cdot \frac{1}{\frac{1}{2} \mathrm{~m} v_{\mathrm{o}}^{2}}=\frac{\mathrm{e}^{2} v_{\mathrm{o}}^{4}}{6 \pi \epsilon_{\mathrm{o}} \mathrm{c}^{3} \cdot 4 \mathrm{~d}^{2}} \cdot \frac{2 \mathrm{~d}}{v_{\mathrm{o}}} \cdot \frac{1}{\frac{1}{2} \mathrm{~m}_{e} v_{\mathrm{o}}^{2}}=\frac{\mathrm{q}^{2} v_{\mathrm{o}}}{6 \pi \epsilon_{\mathrm{o}} \mathrm{c}^{3} \mathrm{~m}_{\mathrm{e}} \mathrm{~d}} \approx 2 \times 10^{-10} \tag{14}
\end{equation*}
$$

6. (a) Show that the momentum of a particle can be expressed in the concise form $p=E v / c^{2}$. (b) Given the following:

$$
\begin{aligned}
& \mathrm{p}=\gamma \mathrm{mv}=\frac{\mathrm{mv}}{\sqrt{1-v^{2} / \mathrm{c}^{2}}} \\
& \mathrm{E}=\gamma \mathrm{mc}^{2}=\frac{\mathrm{mc}^{2}}{\sqrt{1-v^{2} / \mathrm{c}^{2}}}
\end{aligned}
$$

demonstrate that $E^{2}=p^{2} c^{2}+m^{2} c^{4}$.
Solution: Part a:

$$
\begin{equation*}
\mathrm{p}=\gamma \mathrm{m} v=\gamma \mathrm{m}\left(\mathrm{c}^{2} \frac{1}{\mathrm{c}^{2}}\right) v=\gamma \mathrm{mc}^{2}\left(\frac{v}{\mathrm{c}^{2}}\right)=\mathrm{E} \frac{v}{\mathrm{c}^{2}} \tag{15}
\end{equation*}
$$

Part b:

$$
\begin{align*}
p^{2} c^{2}+m^{2} c^{4} & =\frac{m^{2} v^{2} c^{2}}{1-v^{2} / c^{2}}+m^{2} c^{4}=\frac{m^{2} v^{2} c^{2}}{1-v^{2} / c^{2}}+\frac{m^{2} c^{4}\left(1-v^{2} / c^{2}\right)}{1-v^{2} / c^{2}}=\frac{m^{2} v^{2} c^{2}+m^{2} c^{4}-m^{2} c^{2} v^{2}}{1-v^{2} / c^{2}} \tag{16}\\
p^{2} c^{2}+m^{2} c^{4} & =\frac{m^{2} c^{4}}{1-v^{2} / c^{2}}=\left(m c^{2}\right)^{2} \gamma^{2}=\left(\gamma m c^{2}\right)^{2}=E^{2} \tag{17}\\
\Longrightarrow \quad E & =\gamma m c^{2}=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}} \tag{18}
\end{align*}
$$

