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Problem Set 10: Solutions

1. For a one-dimensional infinite square well of length l the allowed energies for noninteracting
particles of mass m were found to be En =n2Eo, where n is a positive integer and Eo =h2/8ml2.
The generalization to a three-dimensional infinite well of side l is

E =
(
n2

x + n2
y + n2

z

)
Eo Eo =

h2

8ml2
(1)

where nx, ny, and nz are positive integers. It is seen that a number of different states (nx,ny,nz)

may have the same energy, a situation called degeneracy. For the first 6 energy levels, list the
energy of the level and the order of degeneracy, i.e., the number of states having the given energy.

Solution: The quantum numbers nx, ny, and nz can take on integer values of 1 and higher. In
order to find the lowest 6 energy levels, we need to find the permutations which give the lowest 6
values of n2

x + n2
y + n2

z. The degeneracy of a given energy means how many different ways a given
energy can be obtained from combinations of n2

x + n2
y + n2

z. That is, for a given energy, how many
(nx,ny,nz) states have the same energy – for example, (nx,ny,nz) = (100), (010), (001) all give
the same energy, viz., 3Eo. Running through the permutations (trial and error possibly involved):

Energy Equal-energy states (nx,ny,nz) Degeneracy
3Eo (111) 1
6Eo (211), (121), (112) 3
9Eo (221), (212), (122) 3
11Eo (311), (131), (113) 3
12Eo (222) 1
14Eo (123), (132), (213) 6

(231), (312), (321)

2. For electrons in a metal or gas molecules in a container, the value of l in the previous problem
is so large that the energy levels can be regarded as forming a continuous spectrum. For this case
determine the number of states (nx,ny,nz) with energies in the interval between E and E+dE.

Solution: If the electrons are non-interacting, we may treat a collection of N electrons as particles
in a square box, with the energy levels given according to the previous problem. Since we know



that different combinations of (nx,ny,nz) may give the same energy, it is convenient to define a
variable

n2 = n2
x + n2

y + n2
z (2)

which will uniquely determine the energy. If you like, think of this as the “energy level.” Think
of this n as a vector to a point nx,ny,nz in a three-dimensional space. In this space, every
integer set (nx,ny,nz) specifies one state of energy n2Eo. Thus, in the space with coordinate axes
(nx,ny,nz), each unit cube contains one state. If the number of states is very large, the unit cubes
and the spacing between the ni are so small that we may consider them to have an essentially
continuous distribution. In that case, the number of states up to a given n is just the volume of a
sphere of radius n:

N(n) =
4
3
πn3 (3)

Since n and E are related, this is equivalent to finding the number of states with energies less than
E:

N(E) =
4
3
πn3 =

4π

3

(
E

Eo

)3/2

=

(
8ml2

h2

)3/2

E3/2 (4)

If we want to know the number of states with energy less than E+dE, we just make a substitution,
and the number of states is

N(E + dE) =

(
8ml2

h2

)3/2

(E + dE)3/2 (5)

If the number of states at an energy E is N(E), then the number of states having energies between
E+dE and E is N(E) dE. Recognizing a derivative when we see one,i

N(E) dE = N(E + dE) − N(E) =

(
8ml2

h2

)3/2 [
(E + dE)3/2 − E3/2

]
= 2π

(
8ml2

h2

)3/2√
E dE (6)

We made one mistake so far, however. We know that the ni can only be positive, but in the analysis
above we considered only n2. In short, we considered the volume of an entire sphere in n-space,
when really we are only allowed to consider the region where all ni >0. Thus, we over-counted by

iThe form we have is g(x) dx=f(x+dx)−f(x), or g(x)=[f(x+dx)−f(x)] /dx. That is the definition of a derivative,
so g(x)=f′(x), or g(x) dx=f′(x) dx.



a factor of 8. Dividing by 8, and noting that each state can actually have both a spin up and spin
down electron (an extra factor of 2), we need to divide the above by 4, giving us

N(E) dE =
4πL3 (2m)3/2

h3

√
E dE (7)

3. (a) Obtain an expression for the Fermi energy at T =0 K for an electron gas in a metal in terms
of the total number of electrons, the volume, and fundamental constants. (b) At T =0 K, what is
the rms speed, in terms of the Fermi energy, of an electron gas in a metal?

Solution: The Fermi energy at T =0 is given by

EF

∣∣
T=0

=
 h2

2m

(
3π2N

V

)2/3

(8)

where N is the number of electrons in a volume V. A derivation may be found here:

http://en.wikipedia.org/wiki/Fermi_energy

This is the energy of the highest-energy electrons in a metal at T =0. If all this energy is available
as kinetic energy,

Ef =
1
2
mv2 =⇒ v =

√
2EF

m
(9)

4. Show that the average kinetic energy of a conduction electron in a metal at 0 K is Eav = 3
5EF.

Hint: in general, the average kinetic energy is

Eav =
1

ne

∫
E N(E) dE (10)

where ne is the density of particles, N(E) dE is the number of electrons per unit volume that have
energies in [E,E + dE], and the integral is over all possible values of energy.

Solution: The Fermi energy, the energy of the highest occupied quantum state in a system of
fermions at absolute zero temperature, is a function of the number of fermions as found in the last
problem. If there are N particles in a volume V, then the highest occupied state has an energy

EF(T = 0) =
 h2

2m

(
3π2N

V

)2/3

(11)

http://en.wikipedia.org/wiki/Fermi_energy


Thus, as more and more particles are added, it takes more and more energy to add the last particle.
The total energy of the system, if there are enough particles to consider the distribution of states
to be quasi-continuous, is given by

Etot =

N∫
0

EF(N′) dN′ (12)

The average energy is simply the total energy divided by the number of particles:

Eavg =
1
N

N∫
0

EF(N′) dN′ =
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5. Explain the basic operation of a field-effect transistor (FET). How does a field effect transistor
uses a small gate voltage to produce large modulations in source to drain current?

Solution: We did this a couple of times in lecture. There is a quick overview here:

http://faculty.mint.ua.edu/~pleclair/PH253/Notes/info_storage.pdf

6. Explain, appealing to band theory, why conductors tend to be opaque and insulators transparent.

Solution: Insulators have a gap of forbidden energies between the highest filled states and lowest
occupied states, so photons of energy less than this gap cannot be absorbed (since that would
involve promoting an electron to a forbidden state). Thus, insulators are transparent for photon
energies less than their energy gap. Metals have no such gap, and can essentially absorb photons
of any energy. Also covered in lecture.

7. Pauli exclusion. What are the energies of the photons that would be emitted when the four-
electron system in the figure below returns to its ground state? See also: Pfeffer & Nir 3.4.5

Solution: The ground state must consist of a spin up and spin down electron in each of the two
lowest energy levels. The possible transitions returning the system to the ground state are shown
above. Transitions A and D have the same energy difference, and thus give rise to the same energy
photon, and thus only three different photons should be observed:

EA = ED = E3 − E2 = 9.36 eV − 4.16 eV = 5.20 eV (14)

EB = E2 − E1 = 4.16 eV − 1.04 eV = 3.12 eV (15)

EC = E3 − E1 = 9.36 eV − 1.04 eV = 8.32 eV (16)

http://faculty.mint.ua.edu/~pleclair/PH253/Notes/info_storage.pdf
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A system of four electrons with three energy levels, their ground state, and the possible transitions to the ground state.

8. Three non-interacting particles are in their ground state in an infinite square well;ii see the
figure above. What happens when a magnetic field is turned on which interacts with the spins of
the particles? Draw the new levels and particles (with spin).
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A system of three electrons in an infinite square well, and the shift of the energy levels when a magnetic field is applied.

Solution: After the external magnetic field is applied, the new value of each particle’s energy level
Ei equals the original level En plus the interaction (Zeeman) energy:

Ei = En −~µs · ~B = En − µszB = En + 2msµBB (17)

Since ms =±1
2 , the new levels will be displaced from the old by an amount ∆E =±µBB, with a

spin −1
2 (“down”) particle occupying the lower sublevel and a spin +1

2 (“up”) particle occupying
the upper sublevel. In contrast to the situation without a magnetic field present, the particle in
the n=2 level will have its spin −1

2 if the system is in the ground state.

iiRecall the energies in an infinite square well are E=n2h2/8ma2


