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Problem Set 2: Random Hints

A little something to get you started . . .

1. (a) Writing down the total energy is easy enough:

E =
1
2
mv2 −

e2

4πεor
(1)

How to get it in terms of radius and frequency? Use the force . . . balance. The electric force between
the proton and neutron has to equal the centripetal force to maintain circular motion:

e2

4πεor2
=

mv2

r
(2)

Solve for v, plug in the first equation. Orbital (angular) frequency is just ω=v/r.

(b) Energy radiated per unit time can be found from the Larmor formula (see the notes) once
you’ve got the acceleration (v2/r).

(c) You just found dE/dt in part (b). You now need dE/dr, which you can get from the formula
you derived in part (a) that has E in terms of r and constants only.

2. First, check that you know what is meant by “angular diameter.”

http://en.wikipedia.org/wiki/Angular_diameter

Thus, if the angular diameter is δ, then tan δ= Rs
2D , where Rs is the sun’s radius and D the sun-moon

distance.

In equilibrium, the power emitted by the sun at temperature TS and absorbed by the moon must
be the same as that re-emitted by the moon at temperature T . The power emitted by a body at
temperature T over area A is

P = σAT4 (3)

http://en.wikipedia.org/wiki/Angular_diameter


where σ is a constant you won’t need. Using the sun’s surface area, you can figure out the power
it emits. The moon receives a fraction of this power: at the moon’s distance, the sun’s emitted
power is spread out over a sphere of radius D, and the moon intercepts an area πR2

m of that sphere.
Multiplying that geometric ratio by the sun’s emitted power gives you the power received by the
moon. Equate that to a blackbody at the moon’s temperature Tm an you’ve got it, once you see
how to put the geometric factor in terms of the angular diameter δ.

Note that you don’t need to know any constants other than π, or any of the distances, just the
angular diameter and the sun’s temperature. You should find the moon’s temperature to be about
Tm≈390 K, which is about right for the maximum temperature at the lunar equator.

See also:
http://en.wikipedia.org/wiki/Black_body#Temperature_relation_between_a_planet_and_its_star

http://www.oberlin.edu/physics/Scofield/p268/library/Ch-03%20Sunlight.pdf

3. Funny, I feel like I asked this one last year.

4. This one’s just math . . . life will be easier if you do a change of variables to u=kx − ωt′.

To find the average for T � τ, try taking the limit of the expression you get after integration as
T→∞. One part will be at max 2 or 3, involving only sin and cos, the other will tend toward zero.

5. The emitted power by a blackbody is given. The power emitted over a range of wavelengths λ1

to λ2 is found by integrating I(λ, T) over those limits. The fraction is then this divided by the total
power:

(fraction) =

λ2∫
λ1

I(λ, T) dλ

∞∫
0

I(λ, T) dλ

(4)

If you read your notes on blackbody radiation, the integral in the denominator is given if you make
a change of variables to u= hc

λkT . That leaves the numerator, which has no closed form. You can
approximate it, however. Using the preceding change of variables, you will end up with an integral
like

u2∫
u1

u3

eu − 1
du (5)

http://en.wikipedia.org/wiki/Black_body#Temperature_relation_between_a_planet_and_its_star
http://www.oberlin.edu/physics/Scofield/p268/library/Ch-03%20Sunlight.pdf


If the limits are 0 and ∞, the integral evaluates to π4/15. For the range of wavelengths you’re
interested in, the limits amount to eu� 1, so you can approximate the denominator as 1

eu−1 ≈
1/eu =e−u. The integral is then analytically solvable, and you can proceed.

The numerical answer I get is about 35% using this approximation.

6. Plug in the trial solutions for x and E. This actually gives you two equations: one equating the
real parts on each side, one part equating the imaginary parts on each side. It is the same thing as
an LCR circuit, if you’ve done those before . . .

7. We’ll do this one in class, or at least set it up. Start by plugging in the expressions for x and
E, expand cos ωt + δ using the rule for cos A + B. cos δ can be found exactly using

cos δ = cos
(
tan−1 X

)
=

1√
1 + X2

(6)

For small damping, use sin δ∼0. Grind through the algebra from there . . . .


