University of Alabama
 Department of Physics and Astronomy

Problem Set 2: Radiation

Instructions:

1. Answer all questions below. Show your work for full credit.
2. All problems are due Fri 3 September 2010 by the end of the day.
3. You may collaborate, but everyone must turn in their own work.
4. In a hydrogen atom an electron of charge $-e$ orbits around a proton of charge $+e$.
(a) Find the total energy E and the orbital frequency ω as a function of r, the distance between the electron and proton.
(b) Calculate the energy radiated per unit time as a function of r.
(c) Using $d r / d t=(d r / d E)(d E / d t)$, find the time it takes for a hydrogen atom to collapse from a radius of $10^{-9} \mathrm{~m}$ to a radius of 0 .
5. Assume the sun radiates like a black body at 5500 K . Assume the moon absorbs all the radiation it receives from the sun and reradiates an equal amount of energy like a black body at temperature T . The angular diameter of the sun seen from the moon is about 0.01 rad . What is the equilibrium temperature T of the moon's surface? (Note: you do not need any other data than what is contained in the statement above.
6. The time average of some function $f(t)$ taken over an interval T is given by

$$
\begin{equation*}
\langle f(t)\rangle=\frac{1}{T} \int_{t}^{T+t} f\left(t^{\prime}\right) d t^{\prime} \tag{1}
\end{equation*}
$$

where t^{\prime} is just a dummy variable of integration. If $\tau=2 \pi / \omega$ is the period of a harmonic function, show that

$$
\begin{align*}
\left\langle\sin ^{2}(k x-\omega t)\right\rangle & =\frac{1}{2} \tag{2}\\
\left\langle\cos ^{2}(k x-\omega t)\right\rangle & =\frac{1}{2} \tag{3}\\
\langle\sin (k x-\omega t) \cos (k x-\omega t)\rangle & =0 \tag{4}
\end{align*}
$$

when $\mathrm{T}=\tau$ and when $\mathrm{T} \gg \tau$.
4. As a function of wavelength, Planck's law states that the emitted power of a black body per unit area of emitting surface, per unit wavelength is

$$
\begin{equation*}
I(\lambda, T)=\frac{8 \pi h c^{2}}{\lambda^{5}}\left[e^{\frac{h c}{\lambda^{\lambda k_{b} T}}}-1\right]^{-1} \tag{5}
\end{equation*}
$$

That is, $\mathrm{I}(\lambda, \mathrm{T}) \mathrm{d} \lambda$ gives the emitted power per unit area emitted between wavelengths λ and $\lambda+$ $\mathrm{d} \lambda$. Show by differentiation that the wavelength λ_{m} at which $I(\lambda, T)$ is maximum satisfies the relationship

$$
\begin{equation*}
\lambda_{\mathrm{m}} \mathrm{~T}=\mathrm{b} \tag{6}
\end{equation*}
$$

where b is a constant. This result is known as Wien's Displacement Law, and can be used to determine the temperature of a black body radiator from only the peak emission wavelength. The constant above has a numerical value of $\mathrm{b}=2.9 \times 10^{6} \mathrm{~nm}-\mathrm{K}$. Note: at some point you will need to solve an equation numerically.
5. Presume the surface temperature of the sun to be 5500 K , and that it radiates approximately as a blackbody. What fraction of the sun's energy is radiated in the visible range of $\lambda=400-700 \mathrm{~nm}$? One valid solution is to plot the energy density on graph paper and find the result numerically.
6. The equation for a driven damped oscillator is

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+2 \gamma \omega_{o} \frac{d x}{d t}+\omega_{o}^{2} x=\frac{q}{m} E(t) \tag{7}
\end{equation*}
$$

(a) Explain the significance of each term.
(b) Let $E=E_{o} e^{i \omega t}$ and $x=\chi_{o} e^{i(\omega t-\alpha)}$ where E_{o} and x_{o} are real quantities. Substitute into the above expression and show that

$$
\begin{equation*}
x_{\mathrm{o}}=\frac{\mathrm{e} \mathrm{E}_{\mathrm{o}} / \mathrm{m}}{\sqrt{\left(\omega_{\mathrm{o}}^{2}-\omega^{2}\right)^{2}+\left(2 \gamma \omega \omega_{\mathrm{o}}\right)^{2}}} \tag{8}
\end{equation*}
$$

(c) Derive an expression for the phase lag α, and sketch it as a function of ω, indicating ω_{o} on the sketch.
7. In class, we will show that an oscillating charge of natural frequency ω_{o} feels a damping force due to the radiation it is emitting, governed by a damping constant γ. If the charge is driven by an external electric field oscillating sinusoidally at $\omega, E(t)=E_{o} \cos \omega t$, we arrive at the following equation of motion for the charge:

$$
\begin{align*}
x(t) & =A \cos (\omega t+\varphi) \tag{9}\\
A & =\frac{e E_{\mathrm{o}} / \mathrm{m}}{\sqrt{\left(\omega_{\mathrm{o}}^{2}-\omega^{2}\right)^{2}+\left(2 \gamma \omega \omega_{\mathrm{o}}\right)^{2}}} \tag{10}\\
\tan \varphi & =\frac{2 \omega \omega_{\mathrm{o}} \gamma}{\omega^{2}-\omega_{\mathrm{o}}^{2}} \tag{11}
\end{align*}
$$

In one sense, our oscillating charge looks like a dipole, which means that a system of oscillating charges looks a bit like a dielectric. One can show that a collection of N such charges per unit volume oscillating together (e.g., a dilute gas) gives the medium a dielectric constant

$$
\begin{equation*}
\epsilon=\epsilon_{o}+\frac{e x N}{E} \tag{12}
\end{equation*}
$$

(a) Using the expressions for $x(t)$ and $E(t)$, show that for small damping (and thus small φ) the dielectric constant can be written ${ }^{\text {[] }}$

$$
\begin{equation*}
\frac{\epsilon}{\epsilon_{\mathrm{o}}}=1+\frac{e^{2} \mathrm{~N}}{\epsilon_{\mathrm{o}} \mathrm{~m}} \frac{\omega^{2}-\omega_{\mathrm{o}}^{2}}{\left(\omega^{2}-\omega_{\mathrm{o}}^{2}\right)^{2}+\left(2 \gamma \omega \omega_{\mathrm{o}}\right)^{2}} \tag{14}
\end{equation*}
$$

(b) Knowledge of the dielectric constant of a medium gives us the index of refraction as well, $\mathrm{n}^{2}=\epsilon / \epsilon_{\mathrm{o}}$. Show that at low density with negligible damping $(\gamma \approx 0)$ the index of refraction is approximately

$$
\begin{equation*}
\mathrm{n} \approx 1+\frac{\mathrm{e}^{2} \mathrm{~N}}{2 \epsilon_{\mathrm{o}} \mathrm{~m}\left(\omega^{2}-\omega_{\mathrm{o}}^{2}\right)^{2}} \tag{15}
\end{equation*}
$$

Note $\sqrt{1+x} \approx 1+\frac{1}{2} x$ when $x \ll 1$.
(c) In air, the natural frequency of the oscillators ω_{o} is in the ultraviolet, so visible light driving the oscillators has frequencies $\omega<\omega_{\mathrm{o}}$. Sketch n for $\omega<\omega_{\mathrm{o}}$. Will red or blue light be refracted more?

$$
\begin{align*}
& { }^{i} \text { Note that for small } \varphi \text {, } \\
& \frac{\cos (\omega t+\varphi)}{\cos \omega t} \approx \cos \varphi=\cos \left[\tan ^{-1}\left(\frac{2 \omega \omega_{\mathrm{o}} \gamma}{\omega^{2}-\omega_{o}^{2}}\right)\right]=\frac{\omega^{2}-\omega_{o}^{2}}{\sqrt{\left(\omega_{o}^{2}-\omega^{2}\right)^{2}+\left(2 \gamma \omega \omega_{\mathrm{o}}\right)^{2}}} \tag{13}
\end{align*}
$$

