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Problem Set 2: Solution

1. In a hydrogen atom an electron of charge −e orbits around a proton of charge +e.

(a) Find the total energy E and the orbital frequency ω as a function of r, the distance between
the electron and proton.
(b) Calculate the energy radiated per unit time as a function of r.
(c) Using dr/dt=(dr/dE)(dE/dt), find the time it takes for a hydrogen atom to collapse from a
radius of 10−9m to a radius of 0.

Solution: The total energy is kinetic plus potential. The potential energy is that of two point
charges e and −e separated by a distance r. If we take the frame of reference that the (much
heavier) proton is at rest, the kinetic energy is just that of the electron, to which we will assign
mass m and velocity v:

E =
1
2
mv2 −

e2

4πεor
(1)

This equation has the electron velocity present, and we wish to find the energy as a function of
radius only. We can eliminate the velocity by noting that the electric force between the proton and
electron is constrained to equal the centripetal force required to maintain circular motion. That is,

−e2

4πεor2
= −

mv2

r
=⇒ mv2 =

e2

4πεor
(2)

Substituting into our first equation,

E =
1
2
mv2 −

e2

4πεor
=

e2

8πεor
−

e2

4πεor
= −

e2

8πεor
(3)

Just like gravitational orbits, the total energy is half of the potential energy. The angular frequency
is found from v=rω, or ω=v/r. From our force balance above, we have v in terms of r, so

ω =
v

r
=

1
r

√
e2

4πεomr
=

√
e2

4πεomr3
(4)



Given that the electron is in circular motion, it is accelerating, which means it must be radiating.
The Larmor formula gives us the average radiated power, or energy per unit time:

dE

dt
= −

e2a2

6πεoc3
(5)

Here we have inserted the minus sign because we know that the electron is losing energy by radiating.
The acceleration a can be found from our force balance above, diving through by mass m:

a = −
v2

r
= −

e2

4πεomr2
(6)

Using the right-most form, we can find the power in terms of radius alone:

dE

dt
= −

e2a2

6πεoc3
= −

e2

6πεoc3

(
e2

4πεomr2

)2

= −
e6

96π3ε3
om2c3r4

(7)

If the electron is radiating, it is losing energy, which means its orbit must be decaying. With the
power in hand, we can calculate the rate at which the radius of the electron’s orbit decays and
figure out how long such an atom would be stable. Using the chain rule

dr

dt
=

dr

dE

dE

dt
=

dE

dt

/
dE

dr
(8)

Since dE/dt is the power we just found, we need only dE/dr:

dE

dr
=

d

dr

(
−

e2

8πεor

)
=

e2

8πεor2
(9)

Putting it together,

dr

dt
=

dE

dt

/
dE

dr
= −

e6

96π3ε3
om2c3r4

(
8πεor2

e2

)
= −

e4

12π2ε2
om2c3r2

= −

(
e4

12π2ε2
om2c3

)
1
r2

(10)

For convenience, let C= e4

12π2ε2
om2c3 . This hideous combination is just a constant anyway, lumping

it all together means we just have to keep track of one constant instead of 6. Our equation then
reads

dr

dt
= −

C

r2
(11)



This equation is separablei:

r2 dr = −C dt (12)

Integrating both sides, and noting that we start at time t=0 at radius ri =10−9 m and end at time
t with radius zero,

0∫
ri

r2 dr = −
1
3
r3
i =

t∫
0

−C dt = −Ct (13)

t =
r3
i

3C
(14)

Substituting our definition of C, the time for the electron to reach the proton is

t =
4π2ε2

om2c3

e4
r3
i (15)

With the given radius of ri =10−9 m, t∼10−7 s. Using a more realistic radius for the lowest energy
state of a hydrogen atom, ri≈5× 10−11 m, one finds t∼10−11 s.

Moral of the story: classical atoms are not stable.

iIf we close our eyes and manipulate the differentials like fractions, we would cross multiply to separate the
equation.



2. Assume the sun radiates like a black body at 5500 K. Assume the moon absorbs all the radiation
it receives from the sun and reradiates an equal amount of energy like a black body at temperature
T . The angular diameter of the sun seen from the moon is about 0.01 rad. What is the equilibrium
temperature T of the moon’s surface? (Note: you do not need any other data than what is contained
in the statement above.

Solution: The geometry of the problem is shown below, where δ is the angular diameter, Rm the
moon’s radius, Rs the sun’s radius, and D the sun-moon distance.

δ

Rs
Rm

D

The definition of angular diameterii, using the distances in the figure above, is

tan
δ

2
=

Rs

D
(16)

With geometry in hand, we now need to balance the sun’s power received by the moon with
the power that the moon will re-radiate by virtue of its being at temperature Tm. Any body at
temperature T emits a power P =!σT4A, where A is the area over which the radiation is emitted
and σ is a constant. Thus, since the sun emits radiation over its whole surface area 4πR2

s,

Ps = σT4
s

(
4πR2

s

)
(17)

At a distance D corresponding to the moon’s position, this power is spread over a sphere of radius
D and surface area 4πD2. The amount of power the moon receives just depends on the ratio its
absorbing area to the total area over which the power is spread out. The moon absorbs radiation
over an area corresponding to its cross section, πR2

m, so the fraction of the sun’s total power that
iiSee, e.g., http://en.wikipedia.org/wiki/Angular_diameter

http://en.wikipedia.org/wiki/Angular_diameter


the moon receives is πR2
m/4πD2. Thus, the moon receives a power

Pmr = Ps
πR2

m

4πD2
= Ps

R2
m

4D2
= σT4

s

(
4πR2

s

) R2
m

4D2
(18)

Absorbing this radiation from the sun will cause the moon to heat up to temperature Tm, and
it will re-emit radiation as a black body at temperature Tm. Though the moon absorbs over its
cross-sectional area, it emits over its whole surface area, so its emitted power is

Pme = σT4
m

(
4πR2

m

)
(19)

Equilibrium requires that the power the moon receives equal the power the moon emits, so

Pmr = Pme (20)

σT4
s

(
4πR2

s

) R2
m

4D2
= σT4

m

(
4πR2

m

)
(21)

T4
s

R2
s

4D2
= T4

m (22)

Tm = Ts

√
Rs

2D
= Ts

√
1
2

tan
δ

2
≈ 275 K (23)

Compare this with a mean lunar surface temperature at the equator of 220 K – not bad given the
approximate geometry, and complete ignorance of reflection! It is interesting to see that the moon’s
radius does not factor in at all – it determines both the absorbed and emitted power in exactly the
same way, and ends up canceling out.

3. The time average of some function f(t) taken over an interval T is given by

〈f(t)〉 =
1
T

T+t∫
t

f(t′) dt′ (24)

where t′ is just a dummy variable of integration. If τ=2π/ω is the period of a harmonic function,
show that

〈sin2 (kx − ωt)〉 =
1
2

(25)

〈cos2 (kx − ωt)〉 =
1
2

(26)

〈sin (kx − ωt) cos (kx − ωt)〉 = 0 (27)

when T =τ and when T�τ.



Solution: Starting with 〈sin2 (kx − ωt)〉, is is convenient to use a substitution

u = kx − ωt′ (28)

du = −w dt′ (29)

Then we have

〈f(t)〉 = 〈sin2 (kx − ωt)〉 =
1
T

T+t∫
t

sin2
(
kx − ωt′

)
dt′ =

−1
ωT

t′=T+t∫
t′=t

sin2 u du

=
−1

2ωT
[u − sinu cos u]

∣∣∣∣t′=T+t

t′=t

=
−1

2ωT
[(kx − ωt) − sin (kx − ωt) cos (kx − ωt)]

∣∣∣∣T+t

t

=
−1

2ωT
[−ωT − sin (kx − ωt − ωT) cos (kx − ωt − ωT) + sin (kx − ωt) cos (kx − ωt)]

=
1
2

+
1

2ωT

(
sin (kx − ωt − ωT) cos (kx − ωt − ωT) − sin (kx − ωt) cos (kx − ωt)

)
(30)

For the specific limit of T =τ= 2π
ω , we note that ωT =ωτ=2π. Thus,

〈sin2 (kx − ωt)〉 =
1
2

+
1

2ωT

(
sin (kx − ωt − 2π) cos (kx − ωt − 2π) − sin (kx − ωt) cos (kx − ωt)

)
(31)

Since sin (θ± 2π)=sin θ and cos (θ± 2π)=cos θ, the second term vanishes, we have

〈sin2 (kx − ωt)〉 =
1
2

(32)

In the limit T � τ, we notice that the second term in Eq. 30 goes as T in the denominator, while
the sin and cos functions in the numerator are each at most 1. Thus, the entire second term goes
as (const)/T . In the limit of large T (say T→∞), this term vanishes.

lim
T→∞〈f(t)〉 = lim

T→∞ 1
2

+
sin (kx − ωt − 2π) cos (kx − ωt − 2π) − sin (kx − ωt) cos (kx − ωt)

2ωT
=

1
2

For the second part, all we need to do is notice that∫
sin2 u du =

1
2
u −

1
2

sinu cos u + C (33)∫
cos2 u du =

1
2
u +

1
2

sinu cos u + C (34)



Both integrals are the same, except for the change of sign of the second term. In both limits
considered, the second term vanishes, so its sign is irrelevant.iii Thus,

〈sin2 (kx − ωt)〉 = 〈cos2 (kx − ωt)〉 =
1
2

T � τ, T = τ (35)

Finally, we are left with

〈f(t)〉 = 〈sin (kx − ωt) cos (kx − ωt)〉 (36)

Using the same substitution above, we find

〈f(t)〉 = 〈sin (kx − ωt) cos (kx − ωt)〉 =
1
T

T+t∫
t

sin (kx − ωt) cos (kx − ωt) dt′

=
−1
ωT

t′=T+t∫
t′=t

sinu cos u du =
−1
ωT

(
1
2

sin2 u

)t′=T+t

t′=t

=
−1

4ωT

(
1 − cos 2u

)t′=T+t

t′=t

=
−1

4ωT

(
− cos (2kx − 2ωt − 2ωT) + cos (2kx − ωt)

)
(37)

At the limit T =τ, since ωT =ωτ=2π the two terms in brackets cancel since cos θ= cos (θ± 2π).
In the limit T�τ, we note

lim
T→∞ − cos (2kx − 2ωt − 2ωT) + cos (2kx − ωt)

4ωT
= 0 (38)

since the numerator can be at most 2 for any value of T . Thus,

〈sin (kx − ωt) cos (kx − ωt)〉 = 0 T � τ, T = τ (39)

4. As a function of wavelength, Planck’s law states that the emitted power of a black body per
unit area of emitting surface, per unit wavelength is

I(λ, T) =
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

(40)

That is, I(λ, T)dλ gives the emitted power per unit area emitted between wavelengths λ and λ +

dλ. Show by differentiation that the wavelength λm at which I(λ, T) is maximum satisfies the
iiiIf you like, repeat everything above with the appropriate signs flipped.



relationship

λmT = b (41)

where b is a constant. This result is known as Wien’s Displacement Law, and can be used to
determine the temperature of a black body radiator from only the peak emission wavelength. The
constant above has a numerical value of b=2.9 × 106 nm-K. Note: at some point you will need to
solve an equation numerically.

Solution: First, we must find dI/dλ. Strictly, we want ∂I/∂λ, since we are presuming constant
temperature, but that is only a formal point since T does not depend on λ. For convenience, define
the following substitutions:

a ≡ 8πhc2 (42)

b ≡ hc

kT
(43)

Thus,

I(λ, T) =
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

=
a

λ5

[
e

b
λ − 1

]−1
(44)

dI

dλ
=

−5a

λ6

1

e
b
λ − 1

+
−a

λ5

(
1

e
b
λ − 1

)2
(

−be
b
λ

λ2

)
=
( a

λ7

) be
b
λ − 5λe

b
λ + 5λ(

e
b
λ − 1

)2 = 0 (45)

Finding the maximum of I(λ, T) with respect to λ means setting dI(λ, T)/dλ=0.iv The denominator
in the equation above is then irrelevant, as is the λ−7 prefactor, and we have

0 = be
b
λ − 5λe

b
λ + 5λ (46)

0 = be
b
λ + 5λ

(
1 − e

b
λ

)
(47)

5 =
be

b
λ

λ
(
e

b
λ − 1

) (48)

We can make another substitution to make things easier. Define x≡ b
λ = hc

λkT and simplify:

xex

ex − 1
− 5 = 0 (49)

ivSince we know the curve is concave downward, we won’t bother with the second derivative test; we know very
well we will find a maximum and not a minimum.



If we find the root of this equation, we have (after undoing our substitutions) the value of λ for
which I(λ, T) is maximum. Unfortunately, there is no analytic solution. Using Newton’s method
or something similar, we find the root is

x =
hc

λkT
≈ 4.695 (50)

Solving for λ, we obtain the desired result:

λmax ≈
hc

4.965kT
≈ 2.898× 106 nm ·K

T
(51)

5. Presume the surface temperature of the sun to be 5500 K, and that it radiates approximately as
a blackbody. What fraction of the sun’s energy is radiated in the visible range of λ=400− 700 nm?
One valid solution is to plot the energy density on graph paper and find the result numerically.

Solution: The emitted power per unit area per unit wavelength for a blackbody is given in a
previous problem:

I(λ, T) =
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

(52)

The power per unit area emitted over a range of wavelengths λ1 to λ2 is found by integrating I(λ, T)

over those limits, and the total power is integrating over all wavelengths from 0 to ∞. The fraction
we desire is then the power over wavelengths λ1 to λ2 divided by the total power:

f = (fraction) =

λ2∫
λ1

I(λ, T) dλ

∞∫
0

I(λ, T) dλ

(53)

Let us first worry about the indefinite integral and put it in a bit simpler form.∫
I(λ, T) dλ =

∫
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

dλ (54)

It is convenient to make a change of variables to

u =
hc

λkbT
or λ =

hc

ukbT
(55)

This substitution implies



du =
hc

kbT

(
−dλ

λ2

)
= −

hc

kbT

(
kbTu

hc

)2

dλ = −
u2kbT

hc
dλ (56)

dλ = −
hc

u2kbT
du (57)

Performing the substitution,∫
I(λ, T) dλ =

∫
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

dλ =

∫
8πhc2u5k5

bT5

h5c5

1
eu − 1

−hc

u2kbT
du (58)

= −
8πk4

bT4

h3c2

∫
u3

eu − 1
du (59)

The overall constants multiplying the integral will cancel in the fraction we wish to find:

f =

8πk4
bT4

h3c2

u2∫
u1

u3

eu−1 du

8πk4
bT4

h3c2

∞∫
0

u3

eu−1 du

=

u2∫
u1

u3

eu−1 du

0∫
∞ u3

eu−1 du

(60)

Here the new limits of integration for the numerator are u1 = hc
λ1kbT ≈ 6.55 m−1 and u2 = hc

λ1kbT ≈
3.74 m−1, and the denominator has limits of ∞ and 0 after the substitution.

f =

3.74∫
6.55

u3

eu−1 du

0∫
∞ u3

eu−1 du

(61)

As it turns out, the integral in the denominator is known, and has a numerical value of π4/15. (At
the end of the solutions set, we show how this may be deduced.) The integral in the numerator
has no closed-form solution, and must be found numerically. One thing we notice is that the
denominator contains a factor eu−1, and at the limits of integration we have

e3.74 ≈ 42 (62)

e6.55 ≈ 700 (63)

In this case, since eu�1, to a good approximation we can write

1
eu − 1

≈ 1
eu

= e−u (64)



The error we make in this approximation is in the worst case of order 1/43 ∼ 2% This makes the
integral in the numerator of our fraction a known one, which can be integrated by partsv:

3.74∫
6.55

u3

eu − 1
du ≈

3.74∫
6.55

u3

e

−u

du = e−u
(
u3 + 3u2 + 6u + 6

) ∣∣∣∣3.74

6.55

≈ 2.29 (65)

Thus,

f ≈ 2.29
π4/15

≈ 0.35 (66)

About 35% of the sun’s radiation should be in the visible range.vi A more exact numerical calcu-
lation gives closer to 36%, meaning our approximation above was indeed accurate to about 2%.

6. The equation for a driven damped oscillator is

d2x

dt2
+ 2γωo

dx

dt
+ ω2

ox =
q

m
E(t) (67)

(a) Explain the significance of each term.
(b) Let E=Eoeiωt and x= xoei(ωt−α) where Eo and xo are real quantities. Substitute into the
above expression and show that

xo =
qEo/m√

(ω2
o − ω2)2 + (2γωωo)2

(68)

(c) Derive an expression for the phase lag α, and sketch it as a function of ω, indicating ωo on
the sketch.

Solution: The significance of each term is probably more apparent if we re-arrange and multiply
by mass:

m
d2x

dt2
= −mω2

ox − 2γmωo
dx

dt
+ qE(t) (69)

The term on the right is the net force on the oscillator. The first term on the left is the restoring
force, the second the viscous damping term, and the last the driving force of the oscillator.

vOr with Wolfram . . .
viThis is what leaves the sun, to figure out what reaches the earth’s surface we would have to account for reflection

and absorption by the atmosphere. The fraction of visible light is closer to 42% at the earth’s surface; see uvb.nrel.
colostate.edu/UVB/publications/uvb_primer.pdf for example.

uvb.nrel.colostate.edu/UVB/publications/uvb_primer.pdf
uvb.nrel.colostate.edu/UVB/publications/uvb_primer.pdf


First, we find the derivatives of x, noting i2 =−1:

dx

dt
= iωxoei(ωt−α) (70)

d2x

dt2
= −ω2xoei(ωt−α) (71)

Substituting into the original equaiton,

q

m
Eoeiωt = −ω2xoei(ωt−α) + 2γωoiωxoei(ωt−α) + ω2

oxoei(ωt−α) (72)
q

m
Eoeiωt = ei(ωt−α)

(
−ω2xo + 2iγωoωxo + ω2

oxo

)
(73)

q

m
Eoeiωt = eiωte−iα

(
−ω2xo + 2iγωoωxo + ω2

oxo

)
(74)

qEo

m
eiα = −ω2xo + 2iγωoωxo + ω2

oxo (75)

To proceed, we use the Euler identity

eiθ = cos θ + i sin θ (76)

Giving

qEo

m
(cos α + i sinα) = −ω2xo + 2iγωoωxo + ω2

oxo (77)

We now have two separate equations if we equate the purely real and purely imaginary parts:

qEo

m
cos α = ω2

oxo − ω2xo (78)

qEo

m
sinα = 2γωωoxo (79)

We can square both equations and add them together:

q2E2
o

m2

(
cos2 α + sin2 α

)
=
(
ω2

o − ω2
)2

x2
o + (2γωωo)2 x2

o (80)

x2
o =

q2E2
o

m2

1
(ω2

o − ω2)2 x2
o + (2γωωo)2

(81)

xo =
qEo

m

1√
(ω2

o − ω2)2 x2
o + (2γωωo)2

(82)

This is the desired amplitude of vibration. Going back to the preceding two equations, we can



divide the second equation by the first to find the phase angle:

tanα =
2γωωo

ω2
o − ω2

(83)

This is the same phase angle derived in the notes (modulo an overall sign due to the convention
chosen), a sketch of phase angle versus frequency is provided there.

7. In class, we will show that an oscillating charge of natural frequency ωo feels a damping force
due to the radiation it is emitting, governed by a damping constant γ. If the charge is driven by
an external electric field oscillating sinusoidally at ω, E(t) = Eo cos ωt, we arrive at the following
equation of motion for the charge:

x(t) = A cos (ωt + ϕ) (84)

A =
eEo/m√

(ω2
o − ω2)2 + (2γωωo)2

(85)

tanϕ =
2ωωoγ

ω2 − ω2
o

(86)

In one sense, our oscillating charge looks like a dipole, which means that a system of oscillating
charges looks a bit like a dielectric. One can show that a collection of N such charges per unit
volume oscillating together (e.g., a dilute gas) gives the medium a dielectric constant

ε = εo +
exN

E
(87)

(a) Using the expressions for x(t) and E(t), show that for small damping (and thus small ϕ) the
dielectric constant can be writtenvii

ε

εo
= 1 +

e2N

εom

ω2 − ω2
o

(ω2 − ω2
o)2 + (2γωωo)2

(89)

(b) Knowledge of the dielectric constant of a medium gives us the index of refraction as well,
n2 = ε/εo. Show that at low density with negligible damping (γ ≈ 0) the index of refraction is

viiNote that for small ϕ,

cos (ωt + ϕ)

cosωt
≈ cosϕ = cos

[
tan−1

(
2ωωoγ

ω2 − ω2
o

)]
=

ω2 − ω2
o√

(ω2
o − ω2)

2
+ (2γωωo)

2
(88)



approximately

n ≈ 1 +
e2N

2εom (ω2 − ω2
o)2

(90)

Note
√

1 + x≈1 + 1
2x when x�1.

(c) In air, the natural frequency of the oscillators ωo is in the ultraviolet, so visible light driving
the oscillators has frequencies ω < ωo. Sketch n for ω < ωo. Will red or blue light be refracted
more?

Appendix: Evaluating
∫∞

0 x3 dx/ (ex − 1)

Pathologically, the best way to calculate the integral

∞∫
0

x3

ex − 1
dx (91)

is to calculate a more general case and reduce it to the answer we require. Take the following
integral

∞∫
0

xn

ex − 1
dx =

∞∫
0

xne−x

1 − e−x
dx (92)

The denominator is always less than one, and is in fact the sum of a geometric series with common
multiplier e−x:

1
1 − e−x

=

∞∑
k=0

e−kx (93)

If we substitute in this series, our integral becomes

∞∫
0

xne−x
∞∑

k=0

e−kx dx (94)

We can bring the factor e−x inside our summation, which only shifts the lower limit of the sum



from 0 to 1, leaving:

∞∫
0

xn
∞∑

k=1

e−kx dx (95)

Now make a change of variables u=kx, meaning

xn =
un

kn
(96)

dx =
du

k
(97)

With this change of variables, our integral is:

∞∫
0

un

kn

∞∑
k=1

eu du

k
=

∞∫
0

un
∞∑

k=1

eu du

kn+1
(98)

Each term in the sum represents an integral over u, all of which are convergent. This means we
can interchange the order of summation and integration:

∞∑
k=1

1
k + 1

∞∫
0

une−u du (99)

The integral on the right side is the definition of the Gamma function Γ(n+1), while the summation
is then the definition of the Riemann zeta function ζ(n + 1). Thus,

∞∫
0

xn

ex − 1
dx = ζ(n + 1)Γ(n + 1) (100)

With n=3,

ζ(n + 1) = ζ(4) =

∞∑
n=1

1
n4

=
π4

90
(101)

Γ(n + 1) = n! = 3! = 6 (102)

And finally,

∞∫
0

x3

ex − 1
dx = ζ(n + 1)Γ(n + 1) =

π4

15
(103)


