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Problem Set 3: Solutions

1. The emitter in a photoelectric tube has a threshold wavelength of 600 nm. Determine the
wavelength of the light incident on the tube if the stopping potential for this light is 2.5 V.

Solution: Recall the photoelectric equation

e∆Vstop = Ephoton − W (1)

where ∆Vstop is the stopping potential, Ephoton the photon energy of the incident light, and W the
binding energy (work function) of the material. The “threshold” wavelength λt is the maximum
wavelength (and thus minimum energy or frequency) of incident light that is capable of ejecting
electrons. Thus, at this threshold wavelength, the incident photon energy must be equal to the
work function, so a measurement of the critical wavelength gives you the work function:

Ephoton =
hc

λt
= W at threshold (2)

If the stopping potential for a particular wavelength λ is ∆V, that means an electron of charge e

moving through that potential difference acquires an energy of e∆V. An energy balance gives

e∆V =
hc

λ
− W =

hc

λ
−

hc

λt
(3)

Solving for λ,

hc

λ
= e∆V +

hc

λt
(4)

1
λ

=
e∆V

hc
+

1
λt

(5)

Noting that hc=1240 eV · nm,

1
λ

=
2.5 eV

1240 eV · nm +
1

600 nm ≈ 3.68× 10−3 nm−1 (6)

λ ≈ 272 nm (7)



2. Find the strength of the transverse magnetic field required to bend all the photoelectrons
within a circle of 20 cm when light of wavelength 400 nm is incident on a barium emitter. The work
function of barium is 2.5 eV.

Solution: The energies in the problem would imply electron velocities of the order 105−106 m/s,
so we may safely neglect relativistic effects. From classical electromagnetism, a particle of charge
q and mass m traveling at velocity v at a right angle to a magnetic field follows circular motion of
radius r:

r =
mv

qB
=

p

qB
(8)

where p is the momentum of the particle. The photoelectric equation gives us the kinetic energy
of the electrons, which we may also relate to the momentum:

K = e∆V =
hc

λi
− W =

p2

2m
(9)

where V is the stopping potential (not needed here), λi the incident photon wavelength, and W

the work function. Solving the above for P, we find

p =
√

2mK =

√
2m

(
hc

λi
− W

)
(10)

Combining this with our expression for the radius,

r =

√
2m
(

hc
λi

− W
)

qB
< ro (11)

where ro =0.2 m is the radius within we wish to confine the photoelectrons. Solving for B,

B >

√
2m
(

hc
λi

− W
)

qro
≈ 13 µT (12)

3. Show that the relation between the directions of motion of the scattered photon and the recoiling
electron in Compton scattering is

1
tan (θ/2)

=

(
1 +

hfi

mec2

)
tanϕ (13)



Solution: Start with the momentum conservation equations for Compton scattering:

αi − αf cos θ =
( pe

mc

)
cos ϕ (14)

αf sin θ =
( pe

mc

)
sinϕ (15)

where αi(f) =hfi(f)/mc2. Dividing them, we have

tanϕ =
αf sin θ

αi − αf cos θ
=

sin θ
αi

αf
− cos θ

(16)

We can use the Compton equation to substitute for αi/αf in terms of αi alone:

tanϕ =
sin θ

αi

αf
− cos θ

=
sin θ

1 + αi (1 − cos θ) − cos θ
=

sin θ

(1 + αi) − (1 + αi) cos θ
(17)

tanϕ =
1

1 + αi

sin θ

1 − cos θ
(18)

With the aid of a rather obscure trigonometric identity, we can simplify this further. Noting

1 − cos θ

sin θ
= tan

(
θ

2

)
(19)

we have

(1 + αi) tanϕ =
1

tan (θ/2)
or 1

tan (θ/2)
=

(
1 +

hfi

mec2

)
tanϕ (20)

4. If the maximum energy imparted to an electron in Compton scattering is 45 keV, what is the
wavelength of the incident photon?

Solution: The electron kinetic energy in Compton scattering (derived in the notes) is

Ee = mc2

(
α2

i (1 − cos θ)

1 + αi (1 − cos θ)

)
(21)

which has a maximum at θ=180◦, giving a maximum energy

Ee,max = mc2

(
2α2

i

1 + 2αi

)
= 45 keV (22)



Solving this for αi will yield the incident wavelength, since αi = hfi/mc2 = hc/λmc2. Let ε =

Ee,max/mc2. Then

ε =

(
2α2

i

1 + 2αi

)
(23)

ε (1 + 2αi) = ε + 2εαi = 2α2
i (24)

0 = 2α2
i − 2εαi − ε (25)

αi =
2ε±

√
4ε2 + 8ε

4
=

1
2
ε± 1

2

√
ε2 + 2ε =

1
2
ε

(
1 +

√
1 +

2
ε

)
=

hc

λmc2
(26)

Noting ε=45 keV/511 keV≈0.088 since mc2≈511 keV for an electron, and hc≈1240 eV · nm,

1
λi

=
mc2

2hc
ε

(
1 +

√
1 +

2
ε

)
≈ 106.5 nm−1 (27)

λ ≈ 9.4× 10−3 nm = 9.4× 10−12 m (28)

5. Show that a free electron at rest cannot absorb a photon, and hence Compton scattering must
occur with free electrons. Hint: try to conserve energy and momentum.

Solution: All we really need to do is conserve energy and momentum for photon absorption by
a stationary, free electron and show that something impossible is implied. Before the collision, we
have a photon of energy hf and momentum h/λ and an electron with rest energy mc2. Afterward,
we have an electron of energy (γ − 1)+mc2 =

√
p2c2 + m2c4 (i.e., the afterward the electron has

acquired kinetic energy, but retains its rest energy) and momentum pe =γmv. Momentum conser-
vation dictates that the absorbed photon’s entire momentum be transferred to the electron, which
means it must continue along the same line that the incident photon traveled. This makes the
problem one dimensional, which is nice.

Enforcing conservation of energy and momentum, we have:

(initial) = (final) (29)

hf + mc2 =
√

p2c2 + m2c4 energy conservation variant 1 (30)

hf + mc2 = (γ − 1) mc2 energy conservation variant 2 (31)
h

λ
= pe = γmv momentum conservation (32)

From this point on, we can approach the problem in two ways, using either expression for the
electron’s energy. We’ll do both, just to give you the idea. First, we use conservation of momentum



to put the electron momentum in terms of the photon frequency:

h

λ
= pe =⇒ hc

λ
= hf = pec (33)

Now substitute that in the first energy conservation equation to eliminate pe, square both sides,
and collect terms:

(
hf + mc2

)2
=
(√

p2c2 + m2c4
)2

=
(√

h2f2 + m2c4
)2

(34)

h2f2 + 2hfmc2 + m2c4 = h2f2 + m2c4 (35)

2hfmc2 = 0 =⇒ f = 0 =⇒ pe = v = 0 (36)

Thus, we conclude that the only way a photon can be absorbed by the stationary electron is if its
frequency is zero, i.e., if there is no photon to begin with! Clearly, this is silly.

We can also use the second variant of the conservation of energy equation along with momentum
conservation to come to an equally ridiculous conclusion:

hf =
hc

λ
= (γ − 1) mc2 energy conservation variant 2 (37)

h

λ
= γmv or hc

λ
= γmvc momentum conservation (38)

=⇒ γmvc = (γ − 1) mc2 (39)

(γ − 1) c = γv (40)
γ − 1

γ
=

v

c
=

√
1 −

1
γ2

(definition of γ) (41)(
γ − 1

γ

)2

= 1 −
1
γ2

(42)

γ2 − 2γ + 1 = γ2 − 1 (43)

γ = 1 =⇒ v = 0 (44)

Again, we find an electron recoil velocity of zero, implying zero incident photon frequency, which
means there is no photon in the first place! Conclusion: stationary electrons cannot absorb photons,
but they can Compton scatter them.

6. Determine the maximum scattering angle in a Compton experiment for which the scattered
photon can produce a positron-electron pair. Hint: twice the electron’s rest energy is required of
the incident photon, see http://en.wikipedia.org/wiki/Pair_production.

Solution: All this means is that the exiting (scattered) photon must have an energy of at least

http://en.wikipedia.org/wiki/Pair_production


2mc2. In terms of the dimensionless photon energies αi = hfi/mc2, αf = hff/mc2, the Compton
equation reads

1
αi

=
1
αf

− (1 − cos θ) (45)

If the exiting photon energy is hff = 2mc2, this means αf = 2. Solving the Compton equation for
αi,

αi =
1

1
αi

− (1 − cos θ)
(46)

Physically, αi is an energy and it must be positive – that is the most basic requirement we can
make. In the equation above, the numerator is clearly always positive, so the only condition we
can enforce is that the denominator remain positive. This requires

1
αi

> (1 − cos θ) (47)

If the denominator tends toward zero, αi tends toward infinity, so this is equivalent to requiring
that the incident photon have finite energy – also very sensible! Solving for θ,

cos θ > 1 −
1
αi

(48)

θ < cos−1

(
1 −

1
αi

)
(49)

In the last line, we reverse the inequality because cos θ is a decreasing function of θ as θ increases
from 0. This amounts to

θ < cos−1

(
1 −

1
2

)
= cos−1

(
1
2

)
= 60◦ (50)

7. In Compton scattering what is the kinetic energy of the electron scattered at an angle ϕ with
respect to the incident photon?

Solution: One way is simply to use the electron’s energy derived in the notes and the result of
problem 3. In principle, that is it: one has the energy in terms of θ, and a way to get θ from
ϕ, so the energy can be determined from a knowledge of αi and ϕ alone. This is acceptable, but
inelegant. Finding a direct relationship between energy, αi, and ϕ would be much nicer.



Start with the electron energy derived in the notes, with ε=Ee/mc2:

ε =
α2

i (1 − cos θ)

1 + αi (1 − cos θ)
(51)

First may use the trigonometric identity 1 − cos θ=2 sin2
(

θ
2

)
:

ε =
α2

i

(
2 sin2

(
θ
2

))
1 + αi

(
2 sin2

(
θ
2

)) =
2α2

i sin2
(

θ
2

)
1 + 2αi sin2

(
θ
2

) (52)

With one more identity, we can put this in terms of tan
(

θ
2

)
, at which point we can use the result

of problem 3. The next identity is:

sin2 θ =
tan2 θ

1 + tan2 θ
(53)

This is indeed a strange identity, and to derive it we should recall sec2 θ= 1 + tan2 θ. Working it
backwards:

tanθ√
1 + tan2 θ

=
sin θ

cos θ

1
sec θ

=
sin θ

cos θ
cos θ = sin θ (54)

which yields

ε =

2α2
i

(
tan2

(
θ
2

)
1 + tan2

(
θ
2

))

1 + 2αi

(
tan2

(
θ
2

)
1 + tan2

(
θ
2

)) =
2α2

i tan2
(

θ
2

)
1 + tan2

(
θ
2

)
+ 2αi tan2

(
θ
2

) =
2α2

i

1
tan2

(
θ
2

) + 1 + 2αi

(55)

Problem 3 gives us

1
tan (θ/2)

= (1 + αi) tanϕ (56)

Using this identity, we have the electron energy in terms of ϕ and αi alone:

ε =
2α2

i

1 + 2αi + (1 + αi)
2 tan2 ϕ

(57)



or

Ee = mc2

(
2α2

i

1 + 2αi + (1 + αi)
2 tan2 ϕ

)
(58)

8. A radio station broadcasts at a frequency of 1 MHz with a total radiated power of 5 kW.
(a) What is the wavelength of this radiation? (b) What is the energy (in electron volts) of the
individual quanta that compose the radiation? How many photons are emitted per second? Per
cycle of oscillation? (c) A certain radio receiver must have 2 µW of radiation power incident on its
antenna in order to provide an intelligible reception. How many 1 MHz photons does this require
per second? Per cycle of oscillation? (d) Do your answers for parts (b) and (c) indicate that the
granularity of electromagnetic radiation can be neglected in these circumstances?

Solution: (a) Radio waves are just light, so knowledge of the frequency gives us the wavelength:

λ =
c

f
= 300 m (59)

(b) The energy of an individual photon is just hf= 4.1 × 10−9 eV = 6.63 × 10−28 J. The station’s
power (P) is the energy (∆E) per unit time (∆t) emitted, and must just be the energy per photon
times the number of photons per unit time. If we call the number of photons per unit time ∆N/∆t,

P =
∆E

∆t
= hf

∆N

∆t
=⇒ ∆N

∆t
=

P

hf
≈ 7.5× 1030 photons/s (60)

There are 106 periods of oscillation per second, so that means that there are approximately
7.5× 1024 photons/period being emitted.

(c) This is precisely the same as the previous question, except the relevant power is 2 µW instead
of 5000 W.

∆N

∆t
=

P

hf
≈ 3.0× 1021 photons/s (61)

Again, there are 106 periods of oscillation per second, so there are approximately 3.0×1015 photons/period
being emitted.

This is certainly enough photons that the granularity of electromagnetic radiation is utterly negli-
gible for everyday power levels such as these.

What would the power level have to be for 1 MHz photons to have a noticeable granularity? Roughly



speaking, the sampling theorem says that if a function x(t) contains no frequencies higher than B,
it is completely determined by sampling at a rate of 1/2B.i. We could say then that the granularity
in a signal would be noticeable in this case if the photons were coming at less than 2 per cycle of
oscillation. That means

∆N

∆t
=

P

hf
≈ 2 photons/period = 2× 106 photons/sec (62)

With the given photon frequency of 1 MHz, we find P∼10−21 W, a negligible amount of power. For
photons of visible light, in the 1015 Hz range, the power is ∼10−12 W, which is close to the limit of
human vision. With dark-adapted scotopic vision, we detect about 8× 10−11 W/m2 of green light
(550 nm), which means down to around ∼102−103 photons/s for an average-sized eye. Just about
enough to notice the granularity, but not quite.ii

9. Time delay in the photoelectric effect. A beam of ultraviolet light of intensity 1.6× 10−12 W is
suddenly turned on and falls on a metal surface, ejecting electrons through the photoelectric effect.
The beam has a cross-sectional area of 1 cm2, and the wavelength corresponds to a photon energy
of 10 eV. The work function of the metal is 5 eV. How soon might one expect photoelectric emission
to occur? Note: 1 eV=1.6× 10−19 J.

(a) One classical model suggests an estimate based on the time needed for the work function en-
ergy (5 eV) to be accumulated over the area of one atom (radius ∼0.1 nm). Calculate how long this
would be, assuming the energy of the light beam to be uniformly distributed over its cross section.

(b) Actually, as Lord Rayleigh showed in 1916, the estimate from (a) is too pessimistic. An atom
can present an effective area of about λ2 to light of wavelength λ corresponding to its resonance
frequency. Calculate a time delay on this basis.

(c) On the quantum picture of the process, it is possible for photoelectron emission to begin
immediately – as soon as the first photon strikes the emitting surface. But to obtain a time that
may be compared to the classical estimates, calculate the average time interval between arrival
of successive 10 eV photons. This would also be the average time delay between switching on the
source and getting the first photoelectron. Hint: think of the power as photons per unit time.

Solution: The power absorbed by the atom is the fraction of the beam’s total area that it intercepts
times the total power in the beam. If the beam has power Pb and area Ab, and a circular atom of

ihttp://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
iiActually, it is more complicated than this. The sensors in the eye are capable of detecting single photons, but our

neural hardware filters the incoming signals to smooth out this granularity. If it didn’t, we would be too distracted
by the granularity in low light. See http://math.ucr.edu/home/baez/physics/Quantum/see_a_photon.html for a
nice discussion.

http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
http://math.ucr.edu/home/baez/physics/Quantum/see_a_photon.html


radius r has an area πr2, the power absorbed by the atom Pa is

Pa = Pb
πr2

Ab
(63)

If the beam power is constant, then so is the power absorbed by the atom. Constant power means
constant energy per unit time, so the amount of energy ∆E absorbed in a time ∆t by the atom is
∆E=Pa∆t, or

∆t =
∆E

Pa
=

∆EAb

Pbπr2
(64)

The atom needs to absorb an energy of ∆E=5 eV, which will require ∆t≈1.6 × 109 s∼50 yr using
the information given. I have it on good authority that this experiment is easily completed in the
PH255 laboratory in a few minutes, so something has gone horribly wrong.

Lord Rayleigh used a more accurate cross-section (recall our discussion of cross sections when we
analyzed radiation) of λ2, which in terms of the light energy E is

λ2 =

(
hc

E

)2

= Aa (65)

This leads to

∆t =
∆E

Pa
=

∆EAb

PbAa
=

∆EAbE2

Pbh2c2
≈ 3200 s ∼ 1 hr (66)

Better, but still very much wrong.

In the quantum model, the power in the beam is just the number of photons per second times the
energy per photon. If we call the number of photons per unit time ∆N/∆t, and the energy per
photon E

P =
∆E

∆t
= E

∆N

∆t
= 1.6× 10−12 W (67)

This implies ∆N
∆t ≈ 106 photons/sec, or that on average, 10−6 seconds passes between photons to

account for 106 arriving over the course of one second.


