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Problem Set 4: Solutions

1. (a) Determine the accelerating potential necessary to give an electron a de Broglie wavelength
of 0.1 nm, which is the size of the interatomic spacing of atoms in a crystal. (b) If we wish to
observe an object which is 0.25 nm in size, what is the minimum-energy photon which can be used?

Solution: (a) The de Broglie wavelength of the electron is λ=h/p. If an electron is accelerated
through a potential of ∆V, it loses a potential energy e∆V and acquires a kinetic energy K =

p2/2m=e∆V. Thus, the electron’s momentum is

p =
√

2me∆V =
h

λ
(1)

Solving for the potential difference,

∆V =
h2

2meλ2
≈ 151 V (2)

(b) In order to observe an object of 0.25 nm size, we need a photon of at least that wavelength (or
smaller): λ60.25 nm. The photon energy is E=hf=hc/λ, so

E >
hc

λ
≈ 4.96 keV (3)

2. From the relationship ∆p∆x>h/4π, show that for a particle moving in a circle ∆L∆θ>h/4π.
The quantity ∆L is the uncertainty in angular momentum and ∆θ is the uncertainty in the angle.

Solution: An electron traveling in a circular path of radius r covering a distance ∆x along the
circle’s perimeter moves through an angle ∆θ according to the arclength formula ∆x=∆θr. Since
r is fixed, this formula holds equally well for an uncertainty in position. The momentum of a the
particle is p=mv=mrω, and given thatm and r are constants, any uncertainty ∆p in the particle’s
momentum must come from an uncertainty in ω, ∆p=mr∆ω.



On the other hand, the particle’s angular momentum is L=mvr=mr2ω, and its uncertainty can
only come from an uncertainty in ω, ∆L=mr2∆ω. Putting our relationships together,

∆x∆p = (r∆θ) (mr∆ω) = ∆θ
(
mr2∆ω

)
= ∆θ∆L >

h

4π
(4)

3. The position of a particle is measured by passing it through a slit of width d. Find the
corresponding uncertainty induced in the particle’s momentum.

Solution: A sketch may help:

x

α

p
∆pxαd=∆x

When the de Broglie wave corresponding to the particle passes through the slit, it will be diffracted
showing an intensity pattern like that shown above. Most of the diffracted intensity on a vertical
screen will be between the first points of zero intensity at angles α and −α, the central region
corresponding to the “direct beam.” These angles related to the slit width d and de Broglie
wavelength according to the relationship given from diffraction (wave optics) theory:

sinα =
λ

d
(5)

Once the particle is diffracted through the slit, it will acquire some unknown momentum in the
vertical (x) direction. Although we don’t know exactly where the particle will hit the screen, it is
by far most probable that it lies in the central region, with its equivalent straight-line path making
at most an angle α with respect to the horizontal. Since the particle’s initial momentum is p=h/λ,



this means that the maximum vertical component of its momentum is

∆px = p sinα =
h

λ

λ

d
=
h

d
(6)

The uncertainty in the particle’s vertical position arises because we do not know exactly where the
particle went through the slit, just that it made it through the slit somewhere over its width d.
Thus, ∆x=d, so the uncertainty in position can be made as small as we like by making d smaller.
However, we see above that this would make the uncertainty in momentum larger by the same
amount, and

∆x∆p = h (7)

The uncertainty relationship is obeyed, independent of the slit’s width or the particle’s wavelength.

4. Upper limit on the rest mass of the photon. de Broglie placed an upper limit of 10−47 kg on the
rest mass of a photon by assuming that radio waves of wavelength 30 m travel with a speed of at
least 99% the speed of visible light (λ= 500 nm). Beginning with the equation E=hf=γmc2 for
a photon of rest mass m, obtain an exact expression for v/c in terms of mc2 and hf. Use this to
find an approximate expression for (c−v)/c in the case mc2�hf. Check de Broglie’s calculation
of the 10−47 kg limit.

Solution: We presume that the photon energy is due to some rest mass-energy plus kinetic energy,
so we can write its total energy as we would any other particle, E=γmc2. Since the photon energy
is also hf, we have

hf = γmc2 =
mc2√

1 − v2/c2
(8)

v

c
=

√
1 −

(
mc2

hf

)2

(9)

If the rest mass-energy is small, such that mc2�hf, then we may use the approximation
√

1 + x≈
1 + 1

2x when x�1:

v

c
≈ 1 −

1
2

(
mc2

hf

)2

(10)

c− v

c
= 1 −

v

c
≈ 1

2

(
mc2

hf

)2

(11)



Solving this for m, we have

m =
hf

c2

√
2
(
c− v

c

)
(12)

If radio waves with λ=30 m travel at 0.99c, then (c− v) /c=0.01. Using λf=v=0.99c,

m =
hv

λc2

√
0.02 =

0.99h
λc

√
0.02 ≈ 1× 10−44 kg (13)

With this data, de Broglie was being a bit overzealous, but not by much . . .

5. Consider the classical motion of a pendulum bob which, for small amplitudes of oscillation, moves
effectively as a harmonic oscillator along a horizontal axis according to the equation x(t)=A sinωt.
The probability that the bob will be found within a small distance ∆x at x in random observations
is proportional to the time it spends in this region during each swing. Obtain a mathematical
expression for this probability as a function of x (P(x)), assuming ∆x�A. (Note: the probability
of the bob being somewhere must be 1, so

∫A
−A P(x)dx=1. This is a good double check.)

Solution: The probability that the bob is in a tiny region dx in the interval [x, x+ dx] is

P(in [x, x+ dx])dx =
time to move dx
half the period (14)

since it takes half the period of motion to go from one extremal point to the other, or from x=−A

to x=A. Here the speed is a function of position, v(x), so to travel a distance dx requires a time
given by

dx = v(x)dt or dt =
dx

v(x)
(15)

Thus, the probability is

P(x)dx =
dt
1
2T

=
2
T

dx

v(x)
or P(x) =

2
T

1
v(x)

(16)

The velocity can be found from the kinetic energy: since K = 1
2mv

2, then v =
√

2K/m. Our
pendulum follows simple harmonic motion, and as such, it really wouldn’t matter if it were an ideal
pendulum, a a mass connected to a spring, or any other kind of simple harmonic oscillator. For
any simple harmonic oscillator, the total energy is always Etot =

1
2kA

2, where k is a force constant



and A the amplitude of motion. For a pendulum, we make the identification that

k

m
=
g

L
(17)

where g is the gravitational acceleration and L the length of the pendulum. Kinetic energy is total
energy minus potential, so conservation of energy gives

K = Etot −U (18)

v =

√
2 (Etot −U)

m
(19)

Noting that the period of a simple harmonic oscillator is T=2π
√
k/m, the probability is then

P(x) =
2
T

√
m

2 (Etot −U)
(20)

For a simple harmonic oscillator, T=2π
√
k/m, Etot =

1
2kA

2, and the potential energy of the system
at any position x is U= 1

2kx
2, which gives

P(x) =
1
π

√
m

k

√
m

kA2 − kx2
=
m

πk

1√
A2 − x2

(21)

This does not necessarily satisfy the condition that the probability of the pendulum being somewhere
is unity, we must enforce that

1 =

∞∫
−∞

P(x)dx (22)

This procedure is called normalization, and all it does is ensure that our probability distribution
is logically consistent – this is a procedure we will go over in more depth in future lectures. If
you didn’t do this, that’s fine for now, and no points will be taken off – it is not something we
discussed much yet, and your answer is proportionally right without normalization. If we give our
probability distribution an overall constant multiplying factor C, we can use the condition above
to enforce unit probability integrated over all possible x. Noting that our pendulum can only take
values of x∈ [−A,A]



1 =

∞∫
−∞

P(x)dx =

A∫
−A

Cm

πk

1√
A2 − x2

dx =

[
Cm

πk
tan−1

(
x
√
A2 − x2

A2 − x2

)]A

−A

= Cmk (23)

This gives C=k/m, so our properly normalized probability distribution is

P(x) =
1
π

1√
A2 − x2

(24)

There is an interesting article on this problem in the American Journal of Physics (vol. 63, page
823, 1995), a physics education journal. It is available online from campus (subscription screened
by IP address).

6. Zero point energy of a harmonic oscillator. The frequency f of a harmonic oscillator of mass m
and elasticity constant k is given by the equation

f =
1
2π

√
k

m
(25)

The energy of the oscillator is given by

E =
p2

2m
+

1
2
kx2 (26)

where p is the system’s linear momentum and x is the displacement from its equilibrium position.
Use the uncertainty principle, ∆x∆p≈  h/2, to express the oscillator’s energy E in terms of x and
show, by taking the derivative of this function and setting dE/dx=0, that the minimum energy of
the oscillator (its ground state energy) is Emin =hf/2.

Solution: The minimum uncertainty in momentum ∆p, given an uncertainty ∆x in position is
given by the uncertainty principle:

∆x∆p =
 h
2

=⇒ ∆p =
 h

2∆x
(27)

The minimum uncertainty is also then the minimum average value we can expect either variable
to take on: pmin =∆p≡p, xmin =∆x≡ x . The energy equation may the be rewritten in terms of
the minimal x and p:

E =
p2

2m
+

1
2
kx2 =

 h2

8mx2
+

1
2
kx2 =

 h2

8mx2
+

1
2
mω2x2 (28)



In the last line, we used ω=
√
k/m, so k=mω2. Minimizing the energy with respect to x,

dE

dx
=

−2 h2

4mx3
+mω2x = 0 =⇒ x2 =

 h
2mω

(29)

Plugging this back in to the energy equation, we have the minimum energy:

Emin =
 h2

8m
2mω

 h
+

1
2
mω2

 h
2mω

=
1
4
 hω+

1
4
 hω =

1
2
 hω (30)

7. Consider the experimental setup sketched below, whose purpose is to measure the position of
an electron. Electrons are in a beam having well-defined momentum px along the x axis. The
microscope (lens + screen) is to be used to see where the electron is located by viewing the light
scattered off of the electron. We shine a light (wavelength λ) along the x axis, a photon will
scatter off of an electron, and the photon will recoil through the microscope. The resolution of this
microscope gives the precision to which the electron’s position can be determined, and is known
from optics:

∆x ∼
λ

sinϕ
(31)

It seems that if we make λ small enough, and sinϕ large enough, ∆x can be made as small as de-
sired. However, we will have sacrificed knowledge of the electron’s recoil momentum, since we can
only determine the (equal and opposite) photon recoil momentum to within the angle subtended
by the aperture ϕ.

Estimate the uncertainty in the x component of the recoil momentum of the electron ∆px, and
show that the uncertainty principle is obeyed in this microscope.

screen

photon
electron

lens

ϕ

Figure 1: Schematic drawing of the Heisenberg microscope for the measurement of electron position.



Solution: This is basically the same problem as number 3, made slightly more realistic by the
addition of a lens.

The electron will recoil after colliding with the photon, and we only know that the collision was such
that the photon came off at an angle somewhere between ϕ and −ϕ, but we can’t say any more
than that. The horizontal component of the electron’s recoil momentum can be anywhere from
p sinϕ to −p sinϕ, where p is the photon momentum. This gives an uncertainty in the electron’s
x momentum, and the microscope lens has its own uncertainty (resolution) given above.

The electron’s recoil momentum will be equal and opposite to the photon’s initial momentum h/λ,
and it can have any angle between ϕ and −ϕ, so its x component can be anywhere in the range

∆px = 2p sinϕ =
2h
λ

sinϕ (32)

Using the given uncertainty in position, a result from wave optics,

∆px∆x =

(
2h
λ

sinϕ
)(

λ

sinϕ

)
= 2h (33)

Since this is greater than the minimum uncertainty h/4π, the uncertainty principle is obeyed in
this situation.

8. In quantum physics, both the position and momentum can be separately described by their
own wave functions which are related by a Fourier transformation. If the position wave function is
ψ(x), and the momentum wave function ϕ(k), where p=  hk,

ψ(x) =
1√
2π

∫
k
ϕ(k)eikx dk (34)

where the integral is over all k∈ [−∞,∞]. Consider a rectangular pulse, given by

ϕ(k) =


0 k < −K

N −K < k < K

0 K < k

(35)

(a) Find the position wave function ψ(x).i

iRecall the Euler identity eikx =coskx+ i sinkx.



(b) Find the value of N for whichii

∞∫
−∞

|ψ(x)|2 dx = 1 (36)

(c) How is this related to the choice of N for which

∞∫
−∞

|ϕ(x)|2 dk =
1
2π

(37)

(d) Show that a reasonable definition of ∆x for your answer to (a) yields

∆k∆x > 1 or ∆p∆x >  h (38)

independent of the value of K.

Solution: The position wave function is:

ψ(x) =
1√
2π

∞∫
−∞

ϕ(k)eikx dk =
1√
2π

K∫
−K

Neikx dk =
N

ix
√

2π
eikx

∣∣∣∣K
−K

=
N

ix
√

2π

(
eiKx − e−iKx

)
=

N

ix
√

2π
(cosKx+ i sinKx− cos −Kx− i sin−Kx) (39)

For the last line, we used the Euler identity eθ =cos θ+ i sin θ. Now note that cos x=cos (−x) and
sin x=− sin (−x),

ψ(x) =
N

ix
√

2π
2i sinKx = N

√
2
π

sinKx
x

(40)

This is again a normalization procedure, like in problem 5. The integral can be identified with that
given in the tiny footnote below by using the substitution u=Kx, du=Kdx:

1 =

∞∫
−∞

|ψ(x)|2 dx =

∞∫
−∞

2N2

π

sin2 Kx

x2
dx =

2N2K

π

∞∫
−∞

sin2 Kx

x2
dx (41)

iiNote
∫∞
0

sinx
x
dx= π

2
and

∫∞
0

sin2 x
x2 dx= π

2
.



Noting that the function sin2 x/x is symmetric about x=0,∫∞
−∞

sin2 x

x2
dx = 2

∫∞
0

sin2 x

x2
dx = π (42)

and we have

1 = 2N2K =⇒ N =
1√
2K

(43)

Integrating ϕ(k) over all k is trivial:

1
2π

=

∞∫
−∞

|ϕ(x)|2 dk =

K∫
−K

N2 dk = 2N2K =⇒ N =
1

2
√
πK

(44)

The two normalization factors for ψ and ϕ differ by a factor 1/
√

2π.

Finally, the width of ϕ(k) should be obvious, it is a box of width 2K. The width of ψ(x) is a bit
trickier. If you plot ψ(x), you’ll notice that most of the intensity comes in the region between the
first two zeros, so the distance between the zeros would be a reasonable estimate of the “width.” In
fact, it is the same function that gives the intensity profile in problem 3, and this is no accident: the
momentum wave function represents a slit filtering out all momenta except those within a narrow
slit, so the position wave function looks like single-slit diffraction! Anyway: we know that the zeros
of ψ(x) will come when sinKx=0, or first at Kx=±π. This gives a width of ∆x=2π/K, and

∆x∆k =

(
2π
K

)
(2K) = 4π or ∆x∆p = 2h (45)

This amounts to proving our previous results from problems 3 and 7: single slit diffraction obeys
the uncertainty principle.

This problem was meant to be a mathematical warm-up to what we’ll cover in more detail in the
next few lectures – based on what you knew at the time, it was nothing more than a math problem,
but hopefully its hidden purpose will become more clear shortly . . .


