University of Alabama
 Department of Physics and Astronomy

Problem Set 6: Wave functions, 1D potentials

Instructions:

1. Answer all questions below. Show your work for full credit.
2. All problems are due Wed 6 October 2010 by the end of the day.
3. You may collaborate, but everyone must turn in their own work.
4. We found the wave functions and energies for a particle in an infinite potential well of width $2 a$ to be

$$
\begin{array}{ll}
\psi^{+}(x)=\frac{1}{\sqrt{\mathrm{a}}} \sin \left(\frac{\mathrm{n} \pi x}{\mathrm{a}}\right) & \mathrm{E}_{\mathrm{n}}^{+}=\frac{\left(\mathrm{n}-\frac{1}{2}\right)^{2} \pi^{2} \hbar^{2}}{2 \mathrm{ma}^{2}} \\
\psi^{-}(\mathrm{x})=\frac{1}{\sqrt{\mathrm{a}}} \cos \left(\frac{\left(\mathrm{n}-\frac{1}{2}\right) \pi x}{\mathrm{a}}\right) & \mathrm{E}_{\mathrm{n}}^{-}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 \mathrm{ma}^{2}}
\end{array}
$$

The + and - here indicate the even/odd solutions (i.e., an even or odd number of half-wavelengths fitting inside the well). Noting that $\left\langle p^{2}\right\rangle=2 \mathrm{mE}_{\mathfrak{n}}^{ \pm}$, calculate $\Delta \mathrm{p} \Delta x$ for even and odd solutions, with $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$. How does the uncertainty behave for increasing n ?
2. The state of a free particle is described by the following wave function

$$
\psi(x)= \begin{cases}0 & x<-b \tag{3}\\ A & -b \leqslant x \leqslant 2 b \\ 0 & x>2 b\end{cases}
$$

(a) Determine the normalization constant A.
(b) What is the probability of finding the particle in the interval $[0, b]$?
(c) Determine $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for this state.
(d) Find the uncertainty in position $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$.
3. A particle of mass m is confined to a one-dimensional box of width L, that is, the potential energy of the particle is infinite everywhere except in the interval $0<x<L$, where its potential energy is zero. The particle is in its ground state. What is the probability that a measurement of the particle's position will yield a result in the left quarter of the box? The wavefunction for a particle in a 1D box may be written

$$
\begin{equation*}
\psi(x)=A \sin (B n x) \tag{4}
\end{equation*}
$$

where A and B are constants you will need to find, and n is an integer. Hint: normalize and apply boundary conditions.
4. Given the wave function

$$
\begin{equation*}
\psi(x)=\frac{N}{x^{2}+a^{2}} \tag{5}
\end{equation*}
$$

(a) Find N needed to normalize ψ.
(b) Find $\langle x\rangle,\left\langle x^{2}\right\rangle$, and Δx.
(c) What is the probability that the particle is found in the interval $[-\mathrm{a}, \mathrm{a}]$?
5. In electromagnetic theory, the conservation of charge is represented by the continuity equation (in one dimension)

$$
\begin{equation*}
\frac{\partial \vec{j}}{\partial x}=-e \frac{\partial \rho}{\partial t} \tag{6}
\end{equation*}
$$

where \vec{j} is current density and ρ charge density.

Identifying $|\psi(x)|^{2}$ as a 'probability density,' the quantum-mechanical analog of current density is

$$
\begin{equation*}
\mathfrak{j}(x)=-\frac{i \hbar e}{2 m}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right) \tag{7}
\end{equation*}
$$

(a) Show that the continuity equation above is satisfied with this definition of current density.
(b) For a bound-state wave function (a wave that isn't traveling), ψ can be chosen to be perfectly real, and $\psi^{*}=\psi$. What does this imply about the current density for bound states?
(c) Verify that the wave function from problem 4 gives zero current density everywhere.
6. A particle is in a stationary state in the potential $V(x)$. The potential function is now increased over all x by a constant value V_{o}. What is the effect on the quantized energy? Show that the spatial wave function of the particle remains unchanged.

