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Problem Set 7: Solutions

1. (a) How many different photons can be emitted by hydrogen atoms that undergo transitions
from the ground state from the n=4 state? (b) Enumerate their energies, in electron volts.

Solution: One can brute-force this quickly enough to find that there are 6 transitions. One may
also solve the problem for an arbitrary n. The number of possible transitions is just equal to the
number of ways one can choose 2 numbers from a set of n without worrying about their order (i.e.,
the number of combinations choosing 2 elements from a set of n):

(number of different photons) =

(
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2

)
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=
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Note that this is also the sum of the first n−1 integers. This works because the order does not
matter: if we have n=4 and pick the pair (4, 3) or (3, 4) we need only count the first ordering, not
the second, since we only want downward transitions. Hence, we use a combination rather than a
permutation. Further, you can easily convince yourself that this includes all possible intermediate
states, accounting for multi-step transitions such as 4 → 3 → 1. Given n= 4, we readily find 6
different transitions from the formula above.

Of course, since we want the energies, we’ll need to enumerate all the possibilities anyway, but now
we at least know how many there should be. All states from n=4 to n=1 have different energies,
and their spacing is not equal. Thus, we have the following possible paths from n=4 to the ground
state:

4 → 1

4 → 2, 2 → 1

4 → 3, 3 → 1

4 → 3, 3 → 2, 2 → 1

The different photons that can be emitted correspond to the unique level transitions above:



4 → 1

4 → 2

4 → 3

3 → 2

3 → 1

2 → 1

Thus, there are 6 possible transitions, just as we calculated above, and the energy differences are
calculated according to the Bohr model

∆Enn′ = −13.6 eV
(

1
n2

−
1
n′2

)
(2)

where n=4 and n′ = {3, 2, 1} are the numbers of the initial and final states, respectively.

2. The wave function for the 3s state of hydrogen (n=3, l=0,ml=0) is

ψ300 =
1
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r
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o

)
e−r/3ao (3)

where ao is the Bohr radius.

(a) What is the most probable value of r?
(b) What is 〈r〉?
(c) What is the total probability of finding the electron at a distance greater than this radius?

Solution: The probability density is easy enough to write down:

P = 4πr2|ψ|2 =
4r2

19683a3
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e−2r/3ao (4)

The most probable radius is when dP/dr=0. The probability density is messy, and the derivative
will only be worse. Perhaps we should employ a computing device of some sort. Go to Wolfram
Alpha

http://www.wolframalpha.com

and type in the probability density above, with x=r/ao and ignoring all the irrelevant multiplying
constants:

http://www.wolframalpha.com


(d/dx)(x2(27 − 18x+ 2x2)2 ∗ e∧ (−2x/3))

Presto, it calculates the derivatives and tells you the roots. A quick plot verifies that the global
maximum is at the largest root, r≈13.07ao. The expected value of r is found from

〈r〉 =

∫∞
0
r|ψ2| 4πr2 dr =

∫∞
0
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Again, let x=r/ao, and let Wolfram do the work, just enter

integral of (4x3/(19683)) ∗ (27 − 18x+ 2x2)2 ∗ e∧ (−2x/3) from 0 to infinity

into Wolfram Alpha, and you’ll find 〈r〉=27/2. The general result is

〈r〉 = aon
2

(
3
2

−
l (l+ 1)

n2

)
(6)

for what it’s worth. Abuse Wolfram once more to find the probability that the electron is outside
this radius, since we just need to integrate P from 〈r〉 to ∞. Given the form of P above, this
amounts to typing this into Wolfram:

integral of (4r2/(19683)) ∗ (27 − 18r+ 2r2)2 ∗ e∧ (−2r/3) from 13.5 to infinity

which yields ≈ 0.512.

3. Schrödinger’s equation for a simple harmonic oscillator reads

−
 h2

2m
∂2ψ

∂x2
+

1
2
mω2x2ψ = Eψ (7)

The ground state wave function has the form

ψo = ae−α2x2 (8)

(a) Determine the value of the constant α and the energy of the state.
(b) Find 〈r〉, 〈r2〉, and ∆r.

Solution: We really just need to substitute into Schrödinger’s equation. First, we will need ∂2ψ
∂x2 :



∂ψ

∂x
= −2α2xae−α2x (9)

∂2ψ

∂x2
= −2α2ae−α2x + 4α4x2ae−α2x = ψo

(
4α4x2 − 2α2

)
(10)

Next, we substitute in to Schrödinger’s equation:

−
 h2

2m
(
4α4x2 − 2α2

)
ψo +

1
2
mω2x2ψo = Eψo (11)

If this equation is to have a general solution, the coefficients of the x2 terms on either side must be
the same, and the constant terms on either side must be equal in sum. The quadratic terms give:

4 h2α4

2m
=

1
2
mω2 =⇒ α =

√
mω

2 h
(12)

Equating the constant terms:

E =
α2 h2

m
=

 h2

m

(mω
2 h

)
=

1
2
 hω (13)

4. By considering the visible spectrum of hydrogen and He+, show how you could determine
spectroscopically if a sample of hydrogen was contaminated with helium. (Hint: look for differences
in the visible emission lines, λ≈390∼750 nm. A difference of 10 nm is easily measured.)

Solution: We know the energies in a hydrogen atom are just En=−13.6 eV/n2 for a given level n.
For the He+ ion, the only real difference is the extra positive charge in the nucleus. If we have Z
positive charges in the nucleus, the energies become En=−13.6 eVZ2/n2. For Z=2, we just end up
multiplying all the energies by a factor 4. The questions are: does this lead to any new radiative
transitions, are they in the visible range, and are they well-separated enough? We can just list the
energy levels for the two systems and see what we come up with.

We already know that the visible transitions in Hydrogen occur when excited states relax to the
n=2 level, and that for large n the transitions will probably have an energy too high to be in the
visible range. Thus, we can probably find a new transition for He+ by just considering the first
several levels alone.
We see a couple of things already. The n=2 state for He+ happens to accidentally have the same
energy as the n=1 state for H, likewise for the n=4 state for He+ and the n=2 state for H. That
means that we can’t just pick transitions at random, some of them will accidentally have the same



H He+

n En (eV) En (eV)
1 −13.6 −13.6 · 4
2 −13.6 · 1

4 −13.6
3 −13.6 · 1

9 −13.6 · 4
9

4 −13.6 · 1
16 −13.6 · 1

4
5 −13.6 · 1

25 −13.6 · 4
25

energy.

However, the n = 3 state for He+ has the curious fraction 4/9 in it, which can’t possibly occur
for H. Transitions into the n = 3 state should yield unique energies. Let’s compute the visible
transitions in hydrogen H, since there are only a few, and see if some He+ transitions stick out in
the in-between wavelengths:

H transition λH (nm) He+ transition λHe+ (nm)
3 → 2 656 4 → 3 469
4 → 2 486 3 → 2 164
5 → 2 434
6 → 2 410

Already with just the 4 → 3 transition in He+, we have an expected emission (or absorption) at
469 nm, a full 17 nm from the nearest H line, and well in the visible range to boot (a nice pretty
blue). Should be easy to pick out!

5. Show that whenever a solution Ψ(x, t) of the time-dependent Schrödinger equation separates
into a product Ψ(x, t) = F(x) · G(t) then F(x) must satisfy the corresponding time-independent
Schrödinger equation and G(t) must be proportional to e−iEt/ h.

Solution: The time-dependent Schrödinger equation reads

i h
∂Ψ

∂t
= ĤΨ (14)

Where Ĥ represents the kinetic plus potential energy,

Ĥ = −
 h2

2m
d2

dx2
+ V(x) (15)

Substituting our separated solution, and noting that any spatial derivative of G(t) is zero,(
− h2

2m
∂2F(x)

∂x2
+ V(x)F(x)

)
G(t) = i hF(x)

∂G(t)

∂t
(16)



Separate everything that depends on x to the left, and everything that depends on t to the right:

− h2

2m
∂2F(x)
∂x2 + V(x)F(x)

F(x)
=
i h∂G(t)

∂t

G(t)
(17)

If both sides are equal, then they must both be equal to the same constant value, which we will
denote as E. Thus,

− h2

2m
∂2F(x)

∂x2
+ V(x)F(x) = EF(x) (18)

Thus, F(x) obeys the time-independent Schrödinger equation. Further,

i h
∂G(t)

∂t
= EG(t) (19)

The latter equation can be re-written

∂G(t)

∂t
=
E

i h
G(t) = −

iE

 h
G(t) (20)

which has the general solutioni

G(t) = Ce−iEt/ h (21)

NB: this is probably not something I would ask on the exam, as it is more math than physics.

6. An experimenter asks for funds from a foundation to observe visually through a microscope the
quantum behavior of a small harmonic oscillator. According to his proposal, the oscillator consists
of an object 10−6 m in diameter and estimated mass of 10−15 kg. It vibrates on the end of a thin
fiber with a maximum amplitude of 10−5 m and frequency 1000 Hz. You are the referee for the
proposal.

(a) What is the approximate quantum number for the system in the state described?
(b) What would its energy be in electron volts if it were in its lowest energy state? Compare with
the average thermal energy at room temperature, ∼1/40 eV.
(c) What would its classical amplitude of vibration be if it were in its lowest energy state? Compare
with the wavelength of visible light, about 500 nm, with which it is presumably observed.
(d) Would you, as a referee of this proposal, recommend award of a grant to carry out this research?

iRecall that if −ady
dx

=y, the general solution is y=Ce−t/a, where C is a constant.



Solution: The energy of a quantum simple harmonic oscillator can be written in terms of its
frequency f, its principle quantum number n, and Planck’s constant h:

E =

(
n+

1
2

)
hf (22)

If the object is a mechanical oscillator, then its vibrational energy must also be related to its
amplitude of vibration A:

E =
1
2
kA2 with 2πf =

√
k

m
(23)

here k is the effective spring constant and m the mass of the oscillator. Combining the last two
expressions, and using the quantities given, we have(

n+
1
2

)
hf = 2π2mf2A2 (24)

n =
2π2m

h
fA2 −

1
2
≈ 2π2m

h
fA2 ≈ 3× 1012 (25)

The system is in a very high quantum state, far too high to expect to observe any discretization of
vibrational modes – this would require a precision of ∼1 part in 1012 in frequency measurement. Its
energy in electron volts for the lowest state, n=0, may then be calculated from either expression:

E0 =

(
0 +

1
2

)
hf ≈ 3× 10−31 J ≈ 2× 10−12 eV (26)

Clearly, the thermal energy at room temperature will induce an overwhelming random vibration.
The amplitude of vibration can be determined by inverting the expression for energy above:

A =
1
πf

√
E

2m
≈ 4× 10−12 m = 4× 10−3 nm (27)

This is roughly five orders of magnitude smaller than the wavelength of light, definitively precluding
any optical observation. Very hard X-rays would be required, and at a wavelength of 10−12 m, the
photon energy would be about 1 MeV, more than sufficient to disturb the oscillator. We cannot
recommend funding of this project!

7. The molecular bonding in the compound NaCl is predominantly ionic, and to a good approxi-
mation we can consider a sodium chloride molecule as consisting of two units – an Na+ ion and a
Cl− ion – bound together. Assuming an electrostatic attraction and a power-law repulsion between



the ions, their potential energy as a function of ion spacing has the form

V(r) = −
ke2

r
+
A

rn
(28)

(a) Find the equilibrium spacing ro.
(b) Find the potential energy at this separation, Vmin.
(c) Find the effective “spring constant” for the molecule, assuming small deviations from ro. One
way to do this is to find the second derivative of V(r) at r=ro.

Solution: Equilibrium spacing occurs when dV/dr=0:

dV

dr

∣∣∣∣
ro

=
ke2

r2o
−
nA

rn+1
o

= 0 (29)

ke2 =
nA

rn−1
o

(30)

ro =

(
nA

ke2

)1/(n−1)

(31)

At this separation, we have

V(ro) = −
ke2

(
ke2
)1/(n−1)

(nA)1/(n−1)
+
A
(
ke2
)n/(n−1)

(nA)n/(n−1)
= −

(
ke2
)n/(n−1)

(nA)1/(n−1)
+A

(
ke2
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)n/(n−1)

(32)

=
(
ke2
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(
1

(nA)1/(n−1)
+

A

(nA)n/(n−1)

)
(33)

=
(
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(
1
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)
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(
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1
n

)
(34)

The spring constant can be found by approximating d2V/dr2 as constant near ro:

d2V

dr2

∣∣∣∣
ro

= −
2ke2

r3o
+
n (n+ 1)A
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o

= −2ke2
(
ke2
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(
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(35)


