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Problem Set 9: Solutions

1. Energetics of diatomic systems I. An approximate expression for the potential energy of two
ions as a function of their separation is

PE = −
ke2

r
+
b

r9
(1)

The first term is the usual Coulomb interaction, while the second term is introduced to account for
the repulsive effect of the two ions at small distances. (a) Find b as a function of the equilibrium
spacing ro. (b) For KCl, with an equilibrium spacing of ro=0.279 nm, calculate the frequency of
small oscillations about r=ro. Hint: do a Taylor expansion of the potential energy to make it look
like a harmonic oscillator for small r=ro.

Solution: The equilibrium spacing will be characterized by the net force between the ions being
zero, or equivalently, the potential energy being zero:

F(ro) = −
dU

dr

∣∣∣∣
r=ro

= 0 =
ke2

r2o
−

9b
r10o

(2)

ke2r8o = 9b (3)

b =
1
9
ke2r8o (4)

Substituting this result back into our potential energy expression, we can find the potential energy
at equilibrium, how much energy is gained by the system of ions condensing into a crystal. First,
the potential energy as a function of spacing:

PE = U(r) = −
ke2

r
+
ke2r8o
9r9

(5)

Evaluating at equilibrium, ro=0.279 nm,

U(ro) = −
ke2

ro
+
ke2

9ro
= −

8ke2

9ro
≈ −4.59 eV (6)

The frequency of small oscillations can be found by Taylor expanding the potential about equilib-



rium for small displacements from equilibrium:

U(r− ro) ≈ U(ro) +U′(ro) (r− ro) +
1
2
U′′(ro) (r− ro)

2 (7)

The first term in the expansion is just the potential energy at equilibrium which we found above.
The second term, linear in displacement, must vanish at equilibrium (which is exactly the condition
we enforced to find b, after all). The third term is quadratic in displacement, just as it would be
for a simple harmonic oscillator, U= 1

2k (r− ro)
2. Thus, the coefficient of the quadratic term must

be 1
2k, which means the frequency of small oscillations is ω=

√
k/µ, where µ is the reduced mass

of the system (see the last problem for a derivation). That is, the diatomic molecule looks like two
masses coupled by a spring.

1
2
k =

1
2
U′′(ro) (8)

k = U′′(ro) = −
2ke2

r3o

90b
r11
o

=
8ke2

r3o
≈ 84.9 N/m (9)

ω =

√
k

µ
= 2πf (10)

The reduced mass of the molecule in terms of the K and Cl atomic masses is

µ =
mKmCl

mK +mCl
≈ 3.09× 10−26 kg (11)

which gives the frequency of oscillation f as

f =
1
2π

√
k

µ
≈ 8.35× 1012 Hz ≈ 278 cm−1 (12)

The accepted valuei is 281 cm−1, in excellent agreement with our simple model.

2. Energetics of diatomic systems II. An expression for the potential energy of two neutral atoms
as a function of their separation r is given by the Morse potential,

PE = Po

[
1 − e−a(r−ro)

]2
(13)

(a) Find the equilibrium spacing and dissociation energy. (b) Calculate the force constant for
small oscillations about r=ro.

iNIST, see http://cccbdb.nist.gov/compvibs3.asp?casno=7447407\&charge=0\&method=14\&basis=9

http://cccbdb.nist.gov/compvibs3.asp?casno=7447407&charge=0&method=14&basis=9


Solution: As in the previous problem, equilibrium is characterized by dU/dr=0.

dU

dr
= 2Po

[
1 − e−a(r−ro)

] (
ae−a(r−ro)

)
= 0 (14)

Either of the terms in brackets could be zero. The latter only leads to the trivial solution of r→∞,
meaning there is no molecule in the first place. Setting the former term in brackets to zero,

0 = 1 − e−a(r−ro) =⇒ r = ro (15)

The dissociation energy is defined as the amount of energy required to take the system from
equilibrium at r=ro to complete breakup for r→∞. Thus,

(dissociation energy) =
[

lim
r→∞U(r)

]
−U(ro) = Po − 0 = Po (16)

In other words, an amount of work Po is required to bring about an infinite separation of the atoms,
and this defines the dissociation energy.

If we wish to calculate a force constant, it is necessary to show that the force at least approximately
obeys Hooke’s law for small displacements, i.e., for a small displacement δ from equilibrium, δ=

r−ro, F(ro + δ)≈kδ where k is the force constant.ii We have already calculated the force versus
displacement:

F(r) = −
dU

dr
= −2Po

[
1 − e−a(r−ro)

] (
ae−a(r−ro)

)
= −2Poa

(
e−a(r−ro) − e−2a(r−ro)

)
F(ro + δ) = −2Poa

(
e−aδ − e−2aδ

)
(17)

For small δ, we may make use of the approximation eδ≈1 + δ + 1
2δ

2 + · · · . Retaining terms only
up to first order,

F(ro + δ) ≈ −2Poa (1 − aδ− 1 + 2aδ) = −
(
2Poa2

)
δ =⇒ k = 2Poa2 (18)

Thus, for small displacements from equilibrium, we may treat the molecule as a mass-spring system,
with an effective force constant k. Note that we could have equivalently used the method from the
last problem, k=U′′, but it is worth seeing how to approach the problem in a different way. For
further information, the Wikipedia article is quite informative:

http://en.wikipedia.org/wiki/Morse_potential

iiEquivalently, we could show U(δ)≈ 1
2
kδ2.

http://en.wikipedia.org/wiki/Morse_potential


3. Variational Principle I. The energy of a system with wave function ψ is given by

E[ψ] =

∫
ψ∗HψdV∫
|ψ|2 dV

(19)

where H is the energy operator. The variational principle is a method by which we guess a trial
form for the wave function ψ, with adjustable parameters, and minimize the resulting energy with
respect to the adjustable parameters. This essentially chooses a “best fit” wave function based on
our guess. Since the energy of the system with the correct wave function will always be minimum,
our guess will always lead to an energy which is slightly too high, but the variational principle
allows us to get as close as possible to the correct energy with our trial wave function.

For a hydrogen-like ion, with Z protons and a single electron, the energy operator may be written
as

H = −
 h2

2m
∇2 −

Zke2

r
(20)

if we presume that the wave function of such an ion in its lowest energy state is functionally the
same as the hydrogen atom,

ψ = c1e
−c2r (21)

where c1 and c2 are adjustable constants.

(a) Use the variational principle and normalization to find the values of c1 and c2 that give the
minimum energy for this trial wave function.

(b) For a He+ ion (Z = 2), compare the ground state energy with the values of c1 and c2 you
determine to the second ionization energy of He, −54.5 eV. Note that since the trial function is
spherically symmetric, dV=4πr2 dr and ∇2ψ= 1

r2
∂
∂r

(
r2 ∂ψ∂r

)
.

Solution: The solution is somewhat lengthy, so it is best to tackle it systematically, step by step.
First, let us calculate ∇2ψ:

∇2ψ =
1
r2
∂

∂r

(
r2
∂ψ

∂r

)
=

1
r2
∂

∂r

(
−r2c1c2e

−c2r
)

=
1
r2

(
−2rc1c2e−c2r + r2c1c

2
2e

−c2r
)

(22)

= c1c2e
−c2r

(
c2 −

2
r

)
(23)

With that in hand, we can calculate Hψ, the energy operator H operating on the wave function ψ



Hψ = −
 h2

2m
∇2ψ−

Zke2

r
ψ = −

 h2

2m
c21c2e

−2c2r

(
c2 −

2
r

)
−
kZe2

r
c21e

−2c2r (24)

Finally, we can calculate ψHψ by multiplying through by the wavefunction:

ψHψ = −
 h2

2m
c21c2e

−2c2r

(
c2 −

2
r

)
−
kZe2

r
c21e

−2c2r (25)

Next, we must integrate this over all space to find the numerator in our energy expression. Since
the wavefunction is spherically symmetric, we may use dV=4πr2 and let r run from 0 to ∞:

∫
ψHψdV = −

2π h2

m
c21

∞∫
0

e−2c2rr2
(
c22 −

2c2
r

)
dr− 4πZke2c21

∞∫
0

re−2c2r dr (26)

= −
2π h2

m
c21

(
c22

2
(2c2)

3 −
2c2

(2c2)
2

)
− Zke2c21

π

(2c2)
2 =

π h2c2

2mc2
−
Zke2πc21
c22

(27)

The denominator of our energy expression is just the normalization condition:

∫
ψ2 dV =

∞∫
0

4πr2c21e
−2c2r dr =

πc21
c32

(28)

Combining,

E[ψ] =

∫
ψ∗HψdV∫
|ψ|2 dV

=
c32
πc21

(
π h2c2

2mc2
−
Zke2πc21
c22

)
=

 h2c22
2m

− Zke2c2 (29)

The best we can do with this wave function is to minimize the energy with respect to our parameters
c1 and c2. The energy does not explicitly depend on c1 – sensible, since it is only a normalization
constant – so we can minimize with respect to c2 to find the minimum ground state energy with
this trial wave function:

∂E

∂c2
=

 h2c2

m
− Zke2 = 0 =⇒ c2 =

Zke2m

 h2
=
Z

ao
(30)

Here ao is the Bohr radius. This is a sensible result: the larger that Z is, the stronger the attraction
of the electron to the nucleus, and the more short-range the wave function becomes. We can find
c1 from normalization, which gives

c1 =

√
Z3

πa3
o

(31)



The best-case trial wavefunction is thus

ψ =

√
Z3

πa3
o

e−Zr/ao (32)

Given our value of c2, we may find the energy of the ground state:

E =
 h2c22
2m

− Zke2c2 =
 h2Z2

2ma2
o

−
kZ2e2

ao
(33)

For He+, with Z = 2, we find E ≈ −54 eV, in very good agreement with experiment and exact
calculations.iii

4. Variational Principle II. Pretend we didn’t know the ground state wave function for hydrogen,
but attempted a trial solution of

ψ = c1e
−c2r

2 (34)

How far off is the ground state energy using this trial wavefunction?

Solution: We follow the same procedure we did for the previous problem, calculate step by step.
First, ∇2ψ:

∇2ψ =
1
r2
∂

∂r

(
r2
∂ψ

∂r

)
= 4c1c22r

2e−c2r
2
− 6c1c2e−c2r

2 (35)

Using the energy operator from the previous problem with Z=1 for hydrogen,

Hψ = −
 h2

2m

(
4c1c22r

2e−c2r
2
− 6c1c2e−c2r

2
)

−
ke2

r
c1e

−c2r
2 (36)

Multiplying through by the wave function,

ψHψ = −
 h2

2m
c21e

−2c2r
2 (

4c22r
2 − 6c2

)
−
ke2

r
c21e

−2c2r
2 (37)

Integrating over all space (noting again that the wave function is spherically symmetric),
iiiWe should not be too surprised, since our ‘trial wavefunction’ was exactly the right one. The next problem shows

how close one can get if the trial wavefunction is not chosen quite as cleverly.



∫
ψHψdV =

∞∫
0

−
4π h2c21
m

(
2c22r− 3c2r2

)
e−2c2r

2
− 4πke2c21re

−2c2r
2
dr (38)

= −
4π h2c21
m

(
2c22

3
√
π

8 (2c2)
3/2

− 3c2

√
π

4
1

(2c2)
3/2

)
−
πke2c21
c2

(39)

=
3π3/2 h2c21
25/2m

√
c2

−
πke2c21
c2

(40)

The denominator in our energy expression gives

∫
ψ2 dV =

∞∫
0

4πr2c21e
−2c2r

2
dr =

√
pi

4
4πc21

(2c2)
3/2

=
c21π

3/2

23/2c
3/2
2

(41)

Combining, we have our energy:

E[ψ] =
23/2c

3/2
2

c21π
3/2

(
3π3/2 h2c21
25/2m

√
c2

−
πke2c21
c2

)
=

3 h2c2

2m
−

23/2ke2
√
c2√

π
(42)

Again, the energy does not depend on the normalization constant c1. Minimizing with respect to
c2,

∂E

∂c2
=

3 h2

2m
−

√
2
π

ke2
√
c2

= 0 =⇒
√
c2 =

2ke2m
3 h2

√
2
π

(43)

Plugging this back into our energy expression,

E =
3 h2

2m
4k2e4m

9 h4
−

3 h2ke2

2ke2m
=

4k2e4m

3π h2
−

8k2e4m

3π h2
= −

8
3π

(
k2e4m

2 h2

)
=

8
3π
E1 (44)

Recognizing that E1 = k2e4m
2 h2 is the correct n=1 ground state energy for Hydrogen, our trial wave

function is just a factor of 8/3π off (or about 15%) at E≈−11.5 eV



5. Consider two equal bodies (not affected by gravity), each of mass, m, attached to three springs,
each with spring constant, k. They are attached in the manner depicted below. (a) Find the
possible frequencies of stable vibrations. We can use this system as a reasonable model for several
types of molecular vibrations.

Figure 1: From http://en.wikipedia.org/wiki/Normal_mode.

(b) A diatomic molecule (figure (a) below) has only one mode of vibration. Find its frequency,
assuming that the masses of A and B are different.

(c) A diatomic molecule adsorbed on a solid surface (figure (b) below) has more possible modes of
vibration. Presuming the two springs and masses to be equivalent, find their frequencies.

Figure 2: From http://prb.aps.org/abstract/PRB/v19/i10/p5355_1.

Solution: We will solve the more general problem of three different springs (k1, k2, and k3 from
left to right) and two different masses m1 and m2. Though it requires a bit more algebra, but
solves all three problems posed: by setting k1 =k2 =k3 and m1 =m2 we solve problem (a), setting
k1 =k3 =0 we solve problem (b), and setting k3 =0 we solve problem (c).

Let mass m1 be displaced from equilibrium by an amount x1 and mass m2 by an amount x2,
with positive x running to the right.iv Mass m1 is connected to springs k1 and k2. Spring k1 is
compressed (or elongated) only by mass m1 due to its displacement x1, and it reacts with a force
−k1x1 on mass m1. Similarly, spring 3 is compressed only by mass 2, so it reacts with a force
−k3x2 on mass m2. Spring 2 is connected to both masses m1 and m2, and its net change in length

ivIt makes no difference which direction we call +x, so long as we are consistent.

http://en.wikipedia.org/wiki/Normal_mode
http://prb.aps.org/abstract/PRB/v19/i10/p5355_1


from equilibrium is the difference between the displacements of masses m1 and m2, x2−x1. If both
masses move in the same direction by the same amount, the net change in length is zero, whereas
if both masses move in opposite directions in the same amount, the net change in length is twice
as much. Spring 2 thus pushes back on both masses m1 and m2 with a force k2(x2−x1).

Putting all this together, we can write the net force on masses m1 and m2, making note of the
fact that for mass m1 the force from k1 is opposite in direction to that of k2, and similarly for the
forces from k3 and k2 on mass m2.

F1 = m1
d2x1

dt2
= −k1x1 + k2 (x2 − x1) (45)

F2 = m2
d2x2

dt2
= −k3x2 + k2 (x1 − x2) (46)

Now, what are the possible modes of oscillation? First, we seek only steady-state solutions. Since
we have not included any damping, that means ones that involve both masses oscillating freely
in a sinusoidal fashion. The symmetry of the problem dictates that only two modes should be
possible: a symmetric one where both masses move in the same direction, and an antisymmetric
one where the masses move in opposite directions. In the symmetric mode, in the limiting case
that k1 =k3 and m1 =m2, we would have the masses moving in unison and the central spring k2

would remain at its equilibrium length (and in this case the frequency should not depend on k2).
In the antisymmetric mode, a higher frequency vibration occurs where the masses move toward
and away from each other. In any case: if we seek steady-state sinusoidal solutions, symmetric or
antisymmetric, there is a single frequency governing each mode, and we may choose

x1 = A1e
iωt (47)

x2 = A2e
iωt (48)

Plugging this trial solution into our equations of motion above,

−m1ω
2A1e

iωt = −k1A1e
iωt + k2 (A2 −A1) e

iωt (49)

−m2ω
2A2e

iωt = −k3A2e
iωt + k2 (A1 −A2) e

iωt (50)

Simplifying, and canceling the common factor of eiωt

−m1ω
2A1 = −k1A1 + k2 (A2 −A1) (51)

−m2ω
2A2 = −k3A2 + k2 (A1 −A2) (52)



We may write this as a system of two equations in terms of the two unknown amplitudes A1 and
A2:

(
m1ω

2 − k1 − k2

)
A1 + k2A2 = 0k2A1 +

(
m2ω

2 − k3 − k2

)
A2 = 0 (53)

Of course, we do not really wish to find the amplitudes, we wish to find ω. We may find ω by
investigating the conditions under which a solution to the above equations exists. First, we write
the equation above in matrix form:[(

m1ω
2 − k1 − k2

)
k2

k2

(
m2ω

2 − k3 − k2

)] [A1

A2

]
=

[
0
0

]
(54)

This system of equations has a solution only if the matrix of coefficients has a determinant of zero:∣∣∣∣∣
(
m1ω

2 − k1 − k2

)
k2

k2

(
m2ω

2 − k3 − k2

)∣∣∣∣∣ = 0 =
(
m1ω

2 − k1 − k2

) (
m2ω

2 − k3 − k2

)
− k2

2 (55)

Expanding,

m1m2ω
4 − [(k2 + k3)m1 + (k1 + k2)m2]ω

2 + (k1 + k2) (k2 + k3) − k2
2 = 0 (56)

This is a quadratic in ω2, which we can readily solve:

ω2 =
(k2 + k3)m1 + (k1 + k2)m2 ±

√
((k2 + k3)m1 + (k1 + k2)m2)

2 − 4m1m2

[
(k1 + k2) (k2 + k3) − k2

2

]
2m1m2

ω2 =
(k2 + k3)m1 + (k1 + k2)m2 ±

√
((k2 + k3)m1 − (k1 + k2)m2)

2 + 4m1m2k
2
2

2m1m2
(57)

It doesn’t simplify a lot more than this in the general case. Let us examine then the cases of interest.

(a) For the problem as stated, we let k1 =k2 =k3≡k and m1 =m2≡m. Our expression above then
simplifies to

ω2 =
4km± 2km

2m2
=

{
3k
m

,
k

m

}
(58)

Physically, this makes sense. We have the symmetric mode (ω=
√
k/m) in which the central spring

remains uncompressed, and the vibrations are only due to each mass m interacting independently
with the spring k that connects it to the wall. The antisymmetric mode has the exterior springs



being compressed by each mass during half the cycle of oscillation, and during the other half the
central spring is compressed by both masses (so twice as much), almost as if three springs are acting
on each mass. This leads to the higher frequency ω=

√
3k/m mode.

(b) For the diatomic molecule, we set k1 =k3 = 0 and k2≡k in the general solution, leading to

ω2 =
km1 + km2 ±

√
(km1 − km2)

2 + 4m1m2k2

2m1m2
=
k (m1 +m2)± k (m1 +m2)

2m1m2
(59)

ω2 =
k (m1 +m2)

m1 +m2
=
k

µ
(60)

Here µ=m1m2/(m1 +m2) is the reduced mass of the system. The diatomic molecule has only
one mode of vibration, the antisymmetric one, which is the same as that of a mass µ connected to
a fixed point by a spring k. The symmetric mode in this case would correspond to a translation
of the whole molecule, since it isn’t anchored to anything. If the molecule is symmetric, m1 =m2,
we have ω2 = 2k/m – since the only mode is the one in which both atoms compress the spring
together, we would expect the frequency to be twice as high as that of a single mass connected by
a spring to a fixed point.

(c) For the symmetric diatomic molecule on a surface, we set k3 = 0 and m1 =m2 ≡m in the
general solution:

ω2 =
(k1 + 2k2)m±

√
(k2m− (k1 + k2)m)2 + 4m2k2

2

2m2
=

(k1 + 2k2)±
√

(k2 − (k1 + k2))
2 + 4k2

2

2m

ω2 =
k1 + 2k2 ±

√
4k2

2 + k2
1

2m
(61)

If the springs are equal – not very realistic for a molecule adsorbed on a surface – this simplifies to

ω2 =

(
3±

√
5
)

2
k

m
(62)

While our free diatomic molecule has only a single mode of vibration, after bonding to the surface
the system again has two vibrational modes, corresponding to symmetric and antisymmetric vibra-
tions of the two masses.

Under the more realistic assumption that the “spring” coupling the molecule to the surface is much
weaker than the interatomic bond, k1�k2,



ω2 =
k1 + 2k2 ±

√
4k2

2 + k2
1

2m
=

k1 + 2k2 ± 2k2

√
1 +

k2
1

4k2
2

2m
≈
k1 + 2k2 ± 2k2

(
1 +

k2
1

8k2
2

)
2m

(63)

ω2 ≈

k1 −
k2

1
4k2

2m
,
k1 + 4k2 +

k2
1

4k2

2m

 ≈
{
k1

2m
,
2k2

m
+
k1

2m

}
(64)

If we write the isolated diatomic molecule’s vibrational frequency as ωo=
√

2k2/m,

ω2 =

{
k1

2m
,
2k2

m
+
k1

2m

}
= {δω,ωo + δω} (65)

Thus, for weak coupling to the surface, the fundamental mode is shifted upward by an amount
δω=

√
k1/2m, and a new low-frequency mode is introduced at δω. Spectroscopically, one can use

this upward shift of the fundamental mode to detect the absorption of molecules on a surface and
estimate the adsorption energy.


