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Problem Set 3 Hints

1. Recall the photoelectric equation

e∆Vstop = hf − W (1)

where ∆Vstop is the stopping potential, f the frequency of incident light, and W the binding energy
(work function) of the material. The “threshold” wavelength is the maximum wavelength (and
thus minimum energy or frequency) of incident light that is capable of ejecting electrons. Thus,
at this threshold wavelength, the incident photon energy must be equal to the work function, so a
measurement of the critical wavelength gives you the work function.

If the stopping potential for a particular wavelength is ∆V, that means an electron of charge e

moving through that potential difference acquires an energy of e∆V. Knowing that and the work
function allows you to deduce the incident frequency or wavelength.

Note that an electron moving through a 2.5 V potential difference acquires (or loses) an energy of
2.5 eV. Using electron volts as a measure of energy is very handy, but you will need to use Planck’s
constant in eV·s rather than J·s to make everything come out correctly . . . it is also handy to know
that hc≈1240 eV·nm.

You should find a wavelength of about 271 nm

2. By ‘circle of 20 cm’ we mean a radius of 20 cm. The fastest (highest energy) electrons will have
the largest radius of curvature, so if you can fit those inside a circle of radius 20 cm, everything
is fine. The radius of curvature of an electron traveling with momentum p perpendicular to a
magnetic field B is

r =
p

qB
(2)

The kinetic energy of the electrons is p2/2m and can be found from the photoelectric equation.
Given an incident wavelength and work function, the photoelectric effect equation tells you the
maximum possible electron kinetic energy. This relates momentum to the wavelength of incident
light and the barium work function, use that momentum in the equation above.



You should find a field of about 13 µT.

3. The momentum equations for Compton scattering in terms of the incident photon momentum
pi, scattered photon momentum pf and electron momentum pe read

pe cos ϕ = pi − pf cos θ (3)

pe sinϕ = pf sin θ (4)

Divide them to get an expression for tanϕ. Rearrange until you can make the equation look like

tanϕ = (stuff)
sin θ

1 − cos θ
(5)

and use the identity

1 − cos θ

sin θ
= tan

(
θ

2

)
(6)

I asked this problem last year.

4. The incident photon energy ends up as the electron’s kinetic energy plus the energy of the
exiting photon. In order to conserve momentum and energy, there must still be an exiting photon
that takes some of the energy. Thus, you can’t simply equate the electron’s energy to the incident
photon energy, in doing that you’ve not accounted for the exiting photon’s energy.

In class I wrote down a formula for the electron’s kinetic energy in terms of the dimensionless
photon energy αi =Ephoton/mc2 =!hfi/mc2 for the incident photon:

KE = mc2

(
α2

i (1 − cos θ)

1 + αi (1 − cos θ)

)
(7)

Here m is the electron mass, of course, and θ is the angle that the exiting photon makes with respect
to the incident photon energy. The maximum electron energy is when θ=180, or cos θ=−1, giving
the maximum kinetic energy as

Emax = mc2

(
2α2

i

1 + 2αi

)
(8)

Since you are given Emax =45 keV, you can solve for αi which gives you the incident photon energy
(and thus wavelength). You’ll end up with a quadratic; the root with negative α can be discarded
as unphysical.



Again, if you’re using energy in eV, then you do need to use Planck’s constant in eV·s when
necessary. It may also be convenient in that case to note that the electron’s rest energy is
mc2 =511 keV=5.11× 105 eV.

You should find a wavelength of about 9× 10−12 m.

5. The electron’s energy is, noting that αimc2 =hfi,

KE = mc2

(
α2

i (1 − cos θ)

1 + αi (1 − cos θ)

)
= hfi

(
αi (1 − cos θ)

1 + αi (1 − cos θ)

)
(9)

If the photon is absorbed by the electron, that means the electron’s kinetic energy must equal the
photon’s initial energy. Try setting KE=hfi and show that a logical and/or mathematical fallacy
results.

I asked this last year in a somewhat different form.

6. All this means is that the exiting (scattered) photon must have an energy of at least 2mc2. In
terms of the dimensionless photon energies αi = hfi/mc2, αf = hff/mc2, the Compton equation
reads

1
αi

=
1
αf

− (1 − cos θ) (10)

If the exiting photon energy is hff =2mc2, this means αf =2. Solve the Compton equation for αi.
Enforce the condition that αi >0.
You should find θ=60◦.

7. I’ve given you the answer above (e.g., problem 5), you just need to derive it . . . asked this last
year.

8. Asked this one last year. The power is the number of photons per second times the energy per
photon. If the frequency is 1 MHz, this is 106 cycles per second. If you know the number of photons
per second, then there must be a factor 106 less per cycle . . .

9. Find the power per unit area in the beam. The power the atom absorbs is that power per unit
area times the area of the atom using the given geometry. That power is how many joules per
second are absorbed. How many seconds does it take to come up with 5 eV = 5 × 1.6 × 10−19 J
worth of energy?

The only thing that changes for part b is to replace the area by λ2 =(hc/E)2.



For part c, the power is the photon energy (given) times the number of photons per second. Using
the known power, find the number of photons per second. Inverting that gives you the average
time between the arrival of individual photons.


