
PH 253 / LeClair Fall 2013

Problem Set 1: Solutions

1. Daily problem due 23 Aug 2013: How fast must a rocket travel relative to the earth so

that time in the rocket “slows down” to half its rate as measured by earth-based observers? Do

present-day jet planes approach such speeds?

Solution: The question wants to know how much time is slowed down compared to the earth-

based observers, which means the earth-based observers have the ‘proper’ time. The rocket must

experience dilated time by comparison. Thus, the elapsed time must be related by

∆t′rocket = γ∆tearth =
∆tearth√
1 − v2/c2

(1)

Time slowing down by a factor two implies

∆t′rocket
∆tearth

= 2 =
1√

1 − v2/c2
(2)

=⇒ 1

4
= 1 −

v2

c2
(3)

=⇒ v =

√
3

2
c ≈ 0.866c ≈ 2.6× 108 m/s (4)

2. Daily problem due 26 Aug 2013: A cube of metal with sides of length a sits at rest in

frame S with one edge parallel to the x-axis. Therefore, in S the cube has volume a3. Frame S′

moves along the x-axis with speed u. As measured by an observer in frame S′, what is the volume

of the metal cube?

Solution: Since relative motion is involved, there must be length contraction for the moving

observer - the person in S′ since we are observing the block. Since there is relative motion only

along the x axis, there is length contraction only along that axis. The cube therefore appears

shortened by a factor γ along the x axis, but its dimensions along y and z are the same. The

volume in the two frames is thus:

V = a · a · a = a3 in S (5)

V ′ =
a

γ
· a · a =

a3

γ
in S′ (6)

The problems below are due by the end of the day on 28 Aug 2013.



3. One of the wavelengths of light emitted by hydrogen atoms under normal laboratory conditions

is λ= 656.3 nm, in the red portion of the electromagnetic spectrum. In the light emitted from a

distant galaxy this same spectral line is observed to be Doppler-shifted to λ = 953.4 nm, in the

infrared portion of the spectrum. How fast are the emitting electrons moving relative to the earth?

Are they approaching the earth or receding from it?

Solution: The relativistic Doppler shift is given by

λo = λs

√
c+ v

c− v
(7)

where λo is the wavelength observed in relative motion at velocity v with respect to the source,

and λs its he wavelength observed in the source’s frame. Positive velocities correspond to observers

approaching the source. We are given both wavelengths: λo= 656.3 nm and λs= 953.4 nm. Since

λo > λs, from the equation above it is clear that we must have v < 0 for this to be true, which

already tells the source is receding. All we need to do is solve the above for v to find the speed,

which gives

v

c
=

(
λo
λs

)2
− 1(

λo
λs

)2
+ 1
≈ 0.357 (8)

4. Two particles in a high-energy accelerator experiment approach each other head-on with a

relative speed of 0.890c. Both particles travel at the same speed as measured in the laboratory.

What is the magnitude of the velocity of one particle relative to the other?

Solution: What we are given is the speed of the two particles relative to each other. That is,

if we were in the reference frame of one of the particles, we would say the other approaches with

u=0.890c. In the observer’s frame (call it S′), we see the particles moving toward each other, each

with the same speed v′. In the S′ frame of reference, we would have to say that adding the two

velocities v′ together gives us u=0.890c.

u =
v′ + v′

1 + v′v′/c2
= 0.890c (9)

Solving this for v′ gives us velocity of one particle relative to the other in the lab frame. The result

is

v′ =
2±

√
4 − 4u2/c2

2u/c2
=
c2

u

(
1±

√
1 − u2/c2

)
≈ {0.611c, 1.64c} (10)

Clearly, the second root, while mathematically allowed, does not make physical sense - we’ve



already established velocities can’t be greater than c. Therefore we reject it as unphysical, and the

remaining valid solution is v≈0.611c.

5. (a) Through what potential difference does an electron have to be accelerated, starting from

rest, to achieve a speed of 0.980c? (b) What is the kinetic energy of the electron at this speed?

Express your answer in both joules and electron volts.

Solution: The key is to remember that a charge q moving through a potential difference ∆V

changes its potential energy by ∆U = q∆V. If we are not worrying about resistive forces, this

change in potential energy is equal to the charge’s change in kinetic energy. Starting from rest, we

know that must be ∆K=(γ− 1)mc2, with γ=1/
√

1 − v2/c2.

For an electron q= e, and mc2 = 511 keV, and with v= 0.980c we have γ≈ 5.025. Putting it all

together,

∆K = ∆U = e∆V = (γ− 1)mc2 = (5.025 − 1)
(
511× 103 eV

)
≈ 2.06× 106 eV (11)

Since e∆V is the particle’s change in both potential and kinetic energy, this is already the answer

to the second part of the question: the particle’s kinetic energy is about 2.06 MeV, or about 0.33 pJ

(p=10−12). The corresponding potential difference is by definition 2.06 MV, illustrating how handy

a unit the electron volt is.

6. Use the following two equations:

~p =
m~v√

1 − v2/c2
(12)

E =
mc2√

1 − v2/c2
(13)

to derive the following relationship:

E =

√
(pc)2 + (mc2)2

Solution: No big trick, just grind through it. Since you know the result you want to get to, start

by finding p2c2.

p2c2 =
m2v2c2

1 − v2/c2
= m2c4

(
v2

c2 − v2

)
(14)

Now add m2c4 and rearrange, and you’ve got it.



p2c2 +m2c4 = m2c4
(

1 +
v2

c2 − v2

)
= m2c4

(
c2 + v2 − v2

c2 − v2

)
(15)

= m2c4
c2

c2 − v2
= m2c4

(
1

1 − v2/c2

)
= γ2m2c4 (16)√

p2c2 +m2c4 = γmc2 = E (17)

7. A charge q at x= 0 accelerates from rest in a uniform electric field ~E which is directed along

the positive x axis.

(a) Show that the acceleration of the charge is given by

a =
qE

m

(
1 −

v2

c2

)3/2

(b) Show that the velocity of the charge at any time t is given by

v =
qEt/m√

1 + (qEt/mc)2

(c) Find the distance the charge moves in a time t. Hint: http: // integrals. wolfram. com

Solution: We are to find the acceleration, velocity, and position as a function of time for a particle

in a uniform electric field. We are given the electric force and the boundary conditions x=0, v=0

at t= 0. We will need only F=dp/dt, p=γmv, the definition of γ (given in previous problems),

and a good knowledge of calculus (including the chain rule once again).

First, we must relate force and acceleration relativistically. Since velocity is explicitly a function

of time here, so is γ, and we must take care.

F =
dp

dt
=
d

dt
(γmv) = γm

dv

dt
+mv

dγ

dt
(18)

dγ

dt
=
d

dt

1√
1 − v2c2

=

(
−1

2

) (
−2v
c2

)
dv
dt

(1 − v2/c2)3/2
=
v

c2
1

(1 − v2/c2)3/2
(19)

F = γm
dv

dt
+
mv2

c2
1

(1 − v2/c2)3/2
dv

dt
= m

(
dv

dt

)(
1√

1 − v2/c2
+

v2

c2

(1 − v2/c2)3/2

)
(20)

F = ma

(
1 − v2

c2

(1 − v2/c2)3/2
+

v2

c2

(1 − v2/c2)3/2

)
=

ma

(1 − v2/c2)3/2
(21)

If you decided not to use γ and wrote everything explicitly in terms of 1/
√

1 − v2/c2, that is fine.

http://integrals.wolfram.com


The end result is the same.

That accomplished, we can set the net force equal to the electric force qE and solve for acceleration:

F = qE =
ma

(1 − v2/c2)3/2
(22)

a =
qE

m

(
1 − v2/c2

)3/2
(23)

We can find velocity by writing a as dv/dt (as it was above) and noticing that the resulting equation

is separable.

a =
dv

dt
=
qE

m

(
1 − v2/c2

)3/2
(24)

qE

m
dt =

dv

(1 − v2/c2)3/2
(25)

We can now integrate both sides, noting from the boundary conditions that if time runs from 0 to

t, the velocity runs from 0 to v.

v∫
0

dv

(1 − v2/c2)3/2
=

t∫
0

qE

m
dt (26)

v√
1 − v2/c2

∣∣∣∣v
0

=
qEt

m

∣∣∣∣t
0

(27)

v√
1 − v2/c2

=
qEt

m
(28)

Solving for v, we first square both sides . . .

v2

1 − v2/c2
=
q2E2t2

m2
(29)

v2 =

(
1 −

v2

c2

)
q2E2t2

m2
(30)

v2
(

1 +
q2E2t2

m2c2

)
=
q2E2t2

m2
(31)

v =
qEt/m√

1 + (qEt/mc)2
(32)



We can find position by integrating v through time from 0 to t, which is straightforward.

x =

t∫
0

qEt/m√
1 + (qEt/mc)2

dt =
mc2

qE

√
1 +

(
qEt

mc

)2
∣∣∣∣∣
t

0

=
mc2

qE

√1 +

(
qEt

mc

)2

− 1

 (33)

Classically, we would expect a parabolic path, but in relativity we find the path is a hyperbola.i Also

note that the position, velocity, and acceleration depend overall on the ratio between the particle’s

rest energy mc2 to the electric force qE (note energy/force is distance).

8. Show that for the preceding question the particle’s speed approaches c as t→∞.

Solution: This is basically a way of double-checking that our previous result makes sense. It also

reinforces the idea that even with a constant, steady acceleration for infinite time nothing is going

to reach the speed of light.

All we need to do is take the t→∞ limit of our velocity expression. Divide everything by t and it

is straightforward.

lim
t→∞ v = lim

t→∞ qEt/m√
1 + (qEt/mc)2

= lim
t→∞ qE/m√

1/t2 + (qE/mc)2
=
qE/m

qE/mc
= c (34)

9. At what speed is the momentum of a particle twice as great as the result obtained from the

non-relativistic expression mv? Express your answer in terms of the speed of light.

Solution: Relativistic momentum is p=γmv, classically we would write p=mv. The latter is off

by a factor of two when

γmv = 2mv (35)

γ = 2 (36)

|v| =

√
3

2
c (37)

10. Light travels with respect to earth at 3× 108 ms . A rocket travels at 2.5× 108 ms with respect

to earth in opposite direction of the light. What is the speed of light as viewed from the rocket?

Solution: It is light, the speed is always c in vacuum.

iIf you square both sides, the equation for x(t) can be put in the form x2/a2 − t2/b2 = 1, the standard form of
the equation for a hyperbola.


