
PH 253 / LeClair Fall 2013

Problem Set 2: Solutions

Daily problem due 4 Sept 2013: Recall the formula we developed for the electric field of a

charge in motion at constant velocity. Calculate the field strength using that expression for the

limiting cases of (a): θ=0, (b) θ=90◦, (c) v=0.

Solution: Our expression for the field of a charge moving at constant velocity was:

q

4πεor2
1 − v2/c2(

1 − v2 sin2 θ/c2
)3/2 (1)

where θ is the angle with respect to the axis of motion, which is also the x axis. Along the horizontal

axis (θ = 0◦), the field is reduced by a factor γ2 compared to what it would be for a stationary

charge,

E′ =
kq

γ2r′2
(
along x′

)
(2)

while along the vertical axis (θ=90◦), the field is enhanced by a factor γ:

E′ =
kqγ

r′2
(
along z′

)
(3)

Daily problem due 6 Sept 2013: Which of the following expressions correspond to traveling

waves? For each of those, what is the speed of the wave? The quantities A,a,b, c are positive real

constants.

ψ(x, t) = (ax− bt)2 (4)

ψ(x, t) = A sin
(
ax2 − bt2

)
(5)

ψ(x, t) =
1

ax2 + b
(6)

ψ(x, t) = A sin 2π

(
x

a
+
t

b

)
(7)

Solution: In order to be a traveling wave, the wavefunction must take the form f(αx±βt). Thus,

only the first and last functions are traveling waves. The velocity is the ratio of the coefficient of

the time term to the spatial term, v=−β/α, and the sign of the time term tells us the direction.

Thus for the first the velocity is v=b/a in the +x direction, and for the last v=a/b along −x



You say the argument of the second function can be factored into
(√
ax−

√
bt
)(√

ax−
√
bt
)

,

and then maybe you could use some trigonometric identities to put it in the form f(αx±βt). Give

it a try – turns out it doesn’t work. Can you guess why?

The problems below are due by the end of the day on 9 Sept 2013.

1. (a) Charge qa is at rest at the origin in system S; charge qb flies by at speed v on a trajectory

parallel to the x axis, but at y= d. What is the electromagnetic force on qb as it crosses the y

axis?

(b) Now study the same problem from system S′, which moves to the right with speed v. What is

the force on qb when qa passes the y′ axis? You can either use your previous answer and transform

the force, or compute the fields in S′ using the Lorentz force law.

Solution: (a) The fields of charge a at charge b are just those of a static charge a distance d

away. The force is then just

~F =
kqaqb
d2

ŷ (8)

(b) The field of charge a at charge b is now that of a charge moving at constant velocity v, sitting

at a distance d away at an angle of θ = 90◦ with respect to the axis of motion. From the first

problem we deduced that the electric field is enhanced by a factor γ in this case, making the force

~F =
γkqaqb
d2

ŷ (9)

2. A proton is uniformly accelerated in a van de Graaff accelerator through a potential difference

of 700 kV. The length of the linear accelerating region is 3 m. (a) Compute the ratio of the radiated

energy to the final kinetic energy. (b) Show that for a particle moving in a linear accelerator the

rate of radiation of energy is

dU

dt
=

q2

6πεom2c3

(
dK

dx

)2

(10)

where K is the kinetic energy.

Solution: The energy radiated in a time t can be found from the Larmor formula for radiated

power

Urad = Pt =
q2a2t

6πεoc3
(11)



The time it takes the proton to move through a distance s with acceleration a and initial velocity

zero we can find from kinematics. The distance covered must be s= 1
2at

2 and the velocity v=at,

which we can combine to give s= 1
2vt. That in turn implies t=2s/v and a=v/t=v2/2s. Inserting

these results into our energy equation:

Urad =
q3v3

12πεoc3s
(12)

This still leaves everything in terms of the velocity, which we can get from conservation of energy:

the potential energy change due to the accelerating potential difference ∆V must be the same as

the kinetic energy change.

K =
1

2
mv2 = q∆V =⇒ v =

√
2q∆V

m
(13)

where m is the proton mass. Putting it all together,

Urad

K
=

1
1
2mv

2

q3v3

12πεoc3s
=

q3v

6πεomc3s
=

q3

6πεomc3s

√
2q∆V

m
(14)

Urad

K
=

q3

6πεoc3s

√
2q∆V

m3
≈ 1.31× 10−20 (15)

Our conclusion is that radiation losses in linear accelerators are utterly negligible. The rate of

energy loss can be related to the kinetic energy gained per unit distance (dK/dx):

K =
1

2
mv2 (16)

dK

dx
= mv

dv

dx
= mv

dv

dt

dt

dx
= ma (17)

For the last step, the chain rule was employed to break up dv/dx into more manageable bits, and

note that dt/dx=1/v. Given this, we can substitute a= 1
m
dK
dx into our power equation and obtain

the desired result:

dU

dt
=

q2a2

6πεom2c3
=

q2

6πεom2c3

(
dK

dx

)2

(18)

3. Assume the sun radiates like a black body at 5500 K. Assume the moon absorbs all the radiation

it receives from the sun and reradiates an equal amount of energy like a black body at temperature

T . The angular diameter of the sun seen from the moon is about 0.01 rad. What is the equilibrium

temperature T of the moon’s surface? (Note: you do not need any other data than what is contained

in the statement above.



Solution: The geometry of the problem is shown below, where δ is the angular diameter, Rm the

moon’s radius, Rs the sun’s radius, and D the sun-moon distance.

δ

Rs
Rm

D

The definition of angular diameteri, using the distances in the figure above, is

tan
δ

2
=
Rs

D
(19)

Keep in mind that the link on the Wikipedia is using diameter instead of radius for some misguided

reason.

With geometry in hand, we now need to balance the sun’s power received by the moon with

the power that the moon will re-radiate by virtue of its being at temperature Tm. Any body at

temperature T emits a power P= σT4A, where A is the area over which the radiation is emitted

and σ is a constant. Thus, since the sun emits radiation over its whole surface area 4πR2s,

Ps = σT
4
s

(
4πR2s

)
(20)

At a distance D corresponding to the moon’s position, this power is spread over a sphere of radius

D and surface area 4πD2. The amount of power the moon receives just depends on the ratio its

absorbing area to the total area over which the power is spread out. The moon absorbs radiation

over an area corresponding to its cross section, πR2m, so the fraction of the sun’s total power that

the moon receives is πR2m/4πD
2. Thus, the moon receives a power

Pmr = Ps
πR2m
4πD2

= Ps
R2m
4D2

= σT4s
(
4πR2s

) R2m
4D2

(21)

Absorbing this radiation from the sun will cause the moon to heat up to temperature Tm, and

it will re-emit radiation as a black body at temperature Tm. Though the moon absorbs over its

iSee, e.g., http://en.wikipedia.org/wiki/Angular_diameter

http://en.wikipedia.org/wiki/Angular_diameter


cross-sectional area, it emits over its whole surface area, so its emitted power is

Pme = σT
4
m

(
4πR2m

)
(22)

Equilibrium requires that the power the moon receives equal the power the moon emits, so

Pmr = Pme (23)

σT4s
(
4πR2s

) R2m
4D2

= σT4m
(
4πR2m

)
(24)

T4s
R2s

4D2
= T4m (25)

Tm = Ts

√
Rs

2D
= Ts

√
1

2
tan

δ

2
≈ 275 K (26)

Compare this with a mean lunar surface temperature at the equator of 220 K – not bad given the

approximate geometry, and complete ignorance of reflection! It is interesting to see that the moon’s

radius does not factor in at all – it determines both the absorbed and emitted power in exactly the

same way, and ends up canceling out.

4. Presume the surface temperature of the sun to be 5500 K, and that it radiates approximately as

a blackbody. What fraction of the sun’s energy is radiated in the visible range of λ=400− 700 nm?

One valid solution is to plot the energy density on graph paper and find the result numerically.

Solution: The emitted power per unit area per unit wavelength for a blackbody is given in a

previous problem:

I(λ, T) =
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

(27)

The power per unit area emitted over a range of wavelengths λ1 to λ2 is found by integrating I(λ, T)

over those limits, and the total power is integrating over all wavelengths from 0 to ∞. The fraction

we desire is then the power over wavelengths λ1 to λ2 divided by the total power:

f = (fraction) =

λ2∫
λ1

I(λ, T)dλ

∞∫
0

I(λ, T)dλ

(28)

Let us first worry about the indefinite integral and put it in a bit simpler form.∫
I(λ, T)dλ =

∫
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

dλ (29)



It is convenient to make a change of variables to

u =
hc

λkbT
or λ =

hc

ukbT
(30)

This substitution implies

du =
hc

kbT

(
−dλ

λ2

)
= −

hc

kbT

(
kbTu

hc

)2

dλ = −
u2kbT

hc
dλ (31)

dλ = −
hc

u2kbT
du (32)

Performing the substitution,∫
I(λ, T)dλ =

∫
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

dλ =

∫
8πhc2u5k5bT

5

h5c5
1

eu − 1

−hc

u2kbT
du (33)

= −
8πk4bT

4

h3c2

∫
u3

eu − 1
du (34)

The overall constants multiplying the integral will cancel in the fraction we wish to find:

f =

8πk4bT
4

h3c2

u2∫
u1

u3

eu−1 du

8πk4bT
4

h3c2

∞∫
0

u3

eu−1 du

=

u2∫
u1

u3

eu−1 du

0∫
∞ u3

eu−1 du

(35)

Here the new limits of integration for the numerator are u1=
hc

λ1kbT
≈ 6.55 m−1 and u2=

hc
λ1kbT

≈
3.74 m−1, and the denominator has limits of ∞ and 0 after the substitution.

f =

3.74∫
6.55

u3

eu−1 du

0∫
∞ u3

eu−1 du

(36)

As it turns out, the integral in the denominator is known, and has a numerical value of π4/15. The

integral in the numerator has no closed-form solution, and must be found numerically. One easy

thing is to just go to wolframalpha.com and enter

integral of xˆ3/(eˆx-1) dx from 3.74 to 6.55

And you’ll find the answer is about 2.29. Given π4/15≈6.49, our ratio is f≈35%.

Assuming for some odd reason you didn’t have the internet at your disposal, all hope is not lost.

One thing we notice is that the denominator contains a factor eu−1, and at the limits of integration

wolframalpha.com


we have

e3.74 ≈ 42 (37)

e6.55 ≈ 700 (38)

In this case, since eu�1, to a good approximation we can write

1

eu − 1
≈ 1

eu
= e−u (39)

The error we make in this approximation is in the worst case of order 1/43 ∼ 2% This makes the

integral in the numerator of our fraction a known one, which can be integrated by partsii:

3.74∫
6.55

u3

eu − 1
du ≈

3.74∫
6.55

u3

e

−u

du = e−u
(
u3 + 3u2 + 6u+ 6

) ∣∣∣∣3.74
6.55

≈ 2.29 (40)

Thus,

f ≈ 2.29

π4/15
≈ 0.35 (41)

About 35% of the sun’s radiation should be in the visible range.iii A more exact numerical calcu-

lation gives closer to 36%, meaning our approximation above was indeed accurate to about 2%.

5. An electron is released from rest and falls under the influence of gravity. (a) How much power

does it radiate? (b) How much energy is lost after it falls 1 m? (Hint: P=∆K/∆t, y= 1
2gt

2.)

Solution: The power emitted by a charge e with acceleration a is

P =
e2a2

6πεoc3
(42)

In this case, under free fall the electron’s acceleration is g≈9.81 m/s2, which gives

P =
e2g2

6πεoc3
≈ 5× 10−52 W (43)

In a time t, starting from rest, an object under the influence of gravity falls a distance ∆y= 1
2gt

2.

iiOr with Wolfram . . .
iiiThis is what leaves the sun, to figure out what reaches the earth’s surface we would have to account for reflection

and absorption by the atmosphere. The fraction of visible light is closer to 42% at the earth’s surface; see uvb.nrel.

colostate.edu/UVB/publications/uvb_primer.pdf for example.

uvb.nrel.colostate.edu/UVB/publications/uvb_primer.pdf
uvb.nrel.colostate.edu/UVB/publications/uvb_primer.pdf


Knowing the electron falls ∆y=1 m, the time it takes is

t =

√
2∆y

g
≈ 0.45 s (44)

Since the power dissipation is constant, the energy lost is just power times time (since P=∆E/∆t):

∆E = Pt =
e2g2

6πεoc3

√
2∆y

g
≈ 2.5× 10−52 J (45)

An utterly negligible amount. We don’t need to worry about radiation of charges accelerated by

gravity.

6. An electron initially moving at constant speed v is brought to rest with uniform deceleration a

lasting for a time t= v/a. Compare the electromagnetic energy radiated during this deceleration

with the electron’s initial kinetic energy. Express the ratio in terms of two lengths, the distance

light travels in time t and the classical electron radius re=e
2/4πεomc

2.

Solution: The power emitted by a charge e with acceleration a is

P =
e2a2

6πεoc3
(46)

In this case, we know that a=v/t. The energy radiated in time t is just U=Pt, so

U = Pt =
e2v2

6πεoc3t
(47)

The ratio of this energy to the kinetic energy before deceleration is

U

K
=

1
1
2mv

2

e2v2

6πεoc3t
=

e2

3πεomc3t
(48)

Noting that the distance light travels in a time t is rl=ct and using the expression for the classical

electron radius above,

U

K
=

e2

3πεomc3t
=

e2

4πεomc2
· 4

3
· 1

ct
=

4re
3rl

(49)

7. A capacitor consists of two parallel rectangular plates with a vertical separation of 0.02 m. The

east-west dimension of the plates is 0.2 m, the north-south dimension is 10 cm. The capacitor has



been charged by connecting it temporarily to a battery of 300 V.

(a) How many excess electrons are on the negative plate?

(b) What is the electric field strength between the plates?

Now, give the quantities as they would be measured in a frame of reference which is moving east-

ward, relative to the laboratory in which the plates are at rest, with speed 0.6c.

(c) The dimensions of the capacitor,

(d) The number of excess electrons on the negative plate,

(e) The electric field strength between the plates.

Solution: (a) The excess charge can be found from the definition of the capacitance and its specific

form for two parallel plates:

C =
Q

∆V
=
εoA

d
=⇒ Q =

εoA∆V

d
≈ 2.665−9 C ≈ 1.66× 1010 electrons (50)

Here ∆V is the potential difference applied to the battery, the area of the plates is the product of

the east-west and north-south distance, lewlns, and d is the vertical separation.

(b) The electric field strength between the plates, treating them as infinite plates, can be found in

two ways:

E =
∆V

d
=
σ

ε0
=

Q

εoA
= 15, 000 V/m (51)

(c) Moving eastward, perpendicular to the direction separating the plates, we will have a contraction

of the east-west length but not the north-south length or the separation. Thus, the new dimensions

of the capacitor are

l′ew = lew/γ = lew
√

1 − v2/c2 = 0.16 m (52)

l′ns = lns = 0.1 m (53)

d′ = d = 0.02 m (54)

(d) The number of electrons per plate is the same, since charge is invariant.

(e) The electric field strength will increase, since we have the same number of electrons confined

to effectively smaller plates. The area of the plates is now a factor of gamma smaller, l′ewl
′
ns =

lewlns/γ, meaning the charge density is a factor γ higher, and thus the electric field is also a factor



of γ higher:

E′ =
σ′

εo
=
γσ

εo
= γE = 18, 750 V/m (55)

When the motion of the capacitor is upward, only the distance between the plates is contracted:

l′ew = lew = 0.2 m (56)

l′ns = lns = 0.1 m (57)

d′ = d/γ = 0.016 m (58)

The number of electrons remains the same, as does the charge density in this case. The plates

move closer together, but for an infinite parallel plate capacitor, the electric field does not depend

on the plate spacing, E=σ/εo. Thus, the electric field is unchanged when the motion is along the

direction of the electric field.

8. Hecht 2.38 Show that the imaginary part of a complex number z is given by

z− z∗

2i
(59)

Solution: Let z=x+iy without loss of generality. Then z∗=x−iy, and

z− z∗ = (x+ iy) − (x− iy) = 2iy (60)

z− z∗

2i
=

2iy

2i
= y. (61)

9. The equation for a driven damped oscillator is

d2x

dt2
+ 2γωo

dx

dt
+ω2

ox =
q

m
E(t) (62)

(a) Explain the significance of each term.

(b) Let E=Eoe
iωt and x= xoe

i(ωt−α) where Eo and xo are real quantities. Substitute into the

above expression and show that

xo =
qEo/m√

(ω2
o −ω

2)2 + (2γωωo)
2

(63)



(c) Derive an expression for the phase lag α, and sketch it as a function of ω, indicating ωo on

the sketch.

Solution: The significance of each term is probably more apparent if we re-arrange and multiply

by mass:

m
d2x

dt2
= −mω2

ox− 2γmωo
dx

dt
+ qE(t) (64)

The term on the right is the net force on the oscillator. The first term on the left is the restoring

force, the second the viscous damping term, and the last the driving force of the oscillator.

First, we find the derivatives of x, noting i2=−1:

dx

dt
= iωxoe

i(ωt−α) (65)

d2x

dt2
= −ω2xoe

i(ωt−α) (66)

Substituting into the original equaiton,

q

m
Eoe

iωt = −ω2xoe
i(ωt−α) + 2γωoiωxoe

i(ωt−α) +ω2
oxoe

i(ωt−α) (67)

q

m
Eoe

iωt = ei(ωt−α)
(
−ω2xo + 2iγωoωxo +ω

2
oxo

)
(68)

q

m
Eoe

iωt = eiωte−iα
(
−ω2xo + 2iγωoωxo +ω

2
oxo

)
(69)

qEo

m
eiα = −ω2xo + 2iγωoωxo +ω

2
oxo (70)

To proceed, we use the Euler identity

eiθ = cos θ+ i sin θ (71)

Giving

qEo

m
(cosα+ i sinα) = −ω2xo + 2iγωoωxo +ω

2
oxo (72)

We now actually have two distinct equations if we separately equate the purely real and purely

imaginary parts (since they can’t equal one other):

qEo

m
cosα = ω2

oxo −ω
2xo real terms (73)

qEo

m
sinα = 2γωωoxo imaginary terms (74)



We can square both equations and add them together:

q2E2o
m2

(
cos2 α+ sin2 α

)
=
(
ω2
o −ω

2
)2
x2o + (2γωωo)

2 x2o (75)

x2o =
q2E2o
m2

1

(ω2
o −ω

2)2 x2o + (2γωωo)
2 (76)

xo =
qEo

m

1√
(ω2
o −ω

2)2 x2o + (2γωωo)
2

(77)

This is the desired amplitude of vibration. Going back to the preceding two equations, we can

divide the second equation by the first to find the phase angle:

tanα =
2γωωo
ω2
o −ω

2
=

2γ
(
ω
ωo

)
1 −

(
ω
ωo

)2 (78)

Using the last form, we can now easily plot α versus ω/ωo. Picking modest damping factors of

0.1, 0.05, and 0.01, you can do something like this at wolframalpha.com

plot of y = arctan(2*0.1*x/(1-xˆ2)) and y = arctan(2*0.05*x/(1-xˆ2)) and y = arctan(2*0.01*x/(1-xˆ2))

you can also add things like “from x=0 to x=2” to change the plot range.

wolframalpha.com

