
Problem Set 3 Solutions

Daily problem due 18 Sept 2013: Determine the maximum scattering angle in a Compton
experiment for which the scattered photon can produce a positron-electron pair. Hint: twice the
electron’s rest energy mec

2 is required of the incident photon for pair production.

Solution: In order to produce a positron-electron pair, enough energy must be present to supply
the rest energy of a positron and an electron. Both have the same mass, me, so that means the
incident photon must supply at least 2mec

2 worth of enery. The threshold wavelength is thus

hf = hc

λth
= 2mec

2 or h

mec
= 2λth (1)

Any wavelengths above this value cannot result in pair production. Substituting this into the
Compton formula,

λf = λi + h

mec
(1− cos θ) = λi + 2λth (1− cos θ) (2)

The right side of the expression is the sum of two positive-definite terms. The right side can be at
most λth - if λf >λth, pair production cannot occur. Even if λi is arbitrarily small, if

2λth (1− cos θ) ≥ λth (3)

then λf >λth. This leads us to a condition on the threshod angle θth

1− cos θth = 1
2 or θth = 60◦ (4)

Alternate Solution

All this means is that the exiting (scattered) photon must have an energy of at least 2mc2. In
terms of the dimensionless photon energies αi = hfi/mc

2, αf = hff/mc
2, the Compton equation

reads

1
αi

= 1
αf
− (1− cos θ) (5)

If the exiting photon energy is hff = 2mc2, this means αf = 2. Solving the Compton equation for
αi,

αi = 1
1
αf
− (1− cos θ)

(6)



Physically, αi is an energy and it must be positive – that is the most basic requirement we can
make. In the equation above, the numerator is clearly always positive, so the only condition we
can enforce is that the denominator remain positive. This requires

1
αf

> (1− cos θ) (7)

If the denominator tends toward zero, αi tends toward infinity, so this is equivalent to requiring
that the incident photon have finite energy – also very sensible. Solving for θ,

cos θ > 1− 1
αf

(8)

θ < cos−1
(

1− 1
αf

)
(9)

In the last line, we reverse the inequality because cos θ is a decreasing function of θ as θ increases
from 0. Given that αf must be at least two for pair production,

θ < cos−1
(

1− 1
2

)
= cos−1

(1
2

)
= 60◦ (10)

Daily problem due 20 Sept 2013: If we wish to observe an object which is 0.25 nm in size,
what is the minimum-energy photon which can be used?

Solution: The resolution limit using photons will be - well within an order of magnitue anyway
- the wavelength of the photons. If we need a resolution of 0.25 nm, we need a photon of this
wavelength, or of energy

E = hf = hc

λ
≈ 1240 eV · nm

0.25 nm ≈ 4960 eV = 4.96 keV (11)

By the way, it is handy to know that hc≈1240 eV · nm.

The problems below are due by the end of the day on 23 Sept 2013.

1. In Compton scattering, what is the kinetic energy of the electron scattered at an angle ϕ to the
incident photon? Your answer should involve only ϕ, the incident photon frequency (or energy),
and fundamental constants.

Solution: One way is simply to use the electron’s energy derived in the notes. In principle, that
is it: one has the energy in terms of θ, and a way to get θ from ϕ, so the energy can be determined
from a knowledge of αi and ϕ alone. This is acceptable, but inelegant. Finding a direct relationship
between energy, αi, and ϕ would be much nicer. Recall the dimensionless energy parameters used



in the notes:

αi = incident photon energy
electron rest energy = hfi

mc2 (12)

αf = scattered photon energy
electron rest energy = hff

mc2 (13)

ε = electron kinetic energy
electron rest energy = Ee

mc2 (14)

The electron’s kinetic energy must be the difference between the incident and scattered photon
energies:

KEe = hfi − hff = αimc
2 − αfmc2 = (αi − αf )mc2 (15)

Solving the Compton equation for αf , we have

αf = αi
1 + αi (1− cos θ) (16)

Combining these two equations,

KEe = (αi − αf )mc2 = mc2
(
αi −

αi
1 + αi (1− cos θ)

)
(17)

ε = KEe
mc2 = α2

i (1− cos θ)
1 + αi (1− cos θ) (18)

We may use the trigonometric identity (1− cos θ)=2 sin2
(
θ
2

)
:

ε =
α2
i

(
2 sin2

(
θ
2

))
1 + αi

(
2 sin2

(
θ
2

)) (19)

With one more identity, we can put this in terms of tan
(
θ
2

)
. The next identity is:

sin2 θ = tan2 θ

1 + tan2 θ
(20)



which yields

ε =

2α2
i

 tan2
(
θ
2

)
1 + tan2

(
θ
2

)


1 + 2αi

 tan2
(
θ
2

)
1 + tan2

(
θ
2

)
 =

2α2
i tan2

(
θ
2

)
1 + tan2

(
θ
2

)
+ 2αi tan2

(
θ
2

) = 2α2
i

1
tan2

(
θ
2

) + 1 + 2αi
(21)

We can make use of another result derived in the notes:

1
tan (θ/2) = (1 + αi) tanϕ (22)

Using this identity, we have the electron energy in terms of ϕ and αi alone:

ε = 2α2
i

1 + 2αi + (1 + αi)2 tan2 ϕ
(23)

or

Ee = mc2
(

2α2
i

1 + 2αi + (1 + αi)2 tan2 ϕ

)
(24)

2. Potassium is illuminated with UV light of wavelength 250 nm. (a) If the work function of
potassium is 2.21 eV, what is the maximum kinetic energy of the emitted electron? (b) If the UV
light has an intensity of 2W/m2, calculate the rate of electron emission per unit area.

Solution: (a) The maximum kinetic energy is given by

KEmax = hf − ϕ = hc

λ
− ϕ = 1240 eV · nm

250 nm − 2.21 eV ≈ 2.75 eV (25)

(b) Our model of the photoelectric effect is one photon in, one electron out. Therefore, if we can
figure out how many photons are incident per unit area per unit time, we are done. The beam
power is energy per unit time per unit area. If we divide this by the energy per photon, we should
have the number of photons per unit time per unit area. The photon energy is hc/λ, so:

photons/m2 · s = total light energy
time · area · 1

photon energy = power/area
photon energy (26)

= 2W/m2

(6.626× 10−34 J · s) (3.00× 108 m/s) / (250× 10−9 m) (27)

≈ 2.52× 1018 (28)



3. The resolving power of a microscope is proportional to the wavelength used. We desire a 10−11 m
(0.01 nm) resolution in order to “see" an atom. If electrons are used, what minimum kinetic energy
is required to reach this resolution? Do not assume that the electron can be treated without
relativity.

Solution: The de Broglie relationship tells us λ= h/p. In order to resolve features of a certain
size with a microscope, the probe we’re using should have a wavelength at least the same size as
the desired resolution (if not smaller, ideally). In this case, our probe is an electron beam, so we
need to have an electron wavelength of at least 10−11 m to resolve features of that size. Using the
de Broglie relationship, and assuming we may need to consider relativistic effects, we could write

λ = 10−11 m = h

p
= h

γmv
(29)

Of course, we want the kinetic energy, rather than the momentum, so we should make use of the
relativistic energy-momentum relationship:

K =
√
p2c2 +m2c4 −mc2 = (γ − 1)mc2 (30)

We now have two choices: solve for the speed using Eq. 29, and then calculate K, or solve the
whole thing algebraically first to put K in terms of p. We choose the latter.

K +mc2 =
√
p2c2 +m2c4 (31)(

K +mc2
)2
−m2c4 = p2c2 (32)

p = 1
c

√
(K +mc2)2 −m2c4 (33)

p = 1
c

√[
(K +mc2 +mc2) (K +mc2 −mc2)

]
= 1
c

√
K (K + 2mc2) (34)

Note the factorization on the last line. Inserting that into Eq. 29, and solving for K:

λ = hc√
K (K + 2mc2)

(35)(
hc

λ

)2
= K

(
K + 2mc2

)
(36)

0 = K2 +
(
2mc2

)
K −

(
hc

λ

)2
(37)

K = −mc2 ±

√
(mc2)2 +

(
hc

λ

)2
(38)



Clearly, only the positive root is physical. Note that the positive root always gives a positive
kinetic energy, so long as λ is not zero. Using the numbers given, and noting mc2 = 511 keV and
hc=1240 eV·nm,

K =

√
(mc2)2 +

(
hc

λ

)2
−mc2 =

√
(511 keV)2 +

(1240 eV · nm
0.01 nm

)2
− 511 keV ≈ 14.8 keV (39)

This means one needs to accelerate the electron through a potential difference of about 15 kV. Note
also

K = mc2

√1 +
(
hf

mc2

)2
− 1

 = mc2

√1 +
(
λc
λ

)2
− 1

 (40)

Here it is more apparent that the relative energy scale is the photon energy hf divided by the
electron’s rest energy mc2, and that the relevant distance scale is the electron’s wavelength relative
to its Compton wavelength λc=h/mc. When the electron’s wavelength is of the same order as or
smaller than the Compton wavelength, or its energy is comparable to or larger than its rest energy,
relativistic and quantum effects become important.

4. By doing a nuclear diffraction experiment, you measure the de Broglie wavelength of a proton
to be 9.16 fm. (a) What is the speed of the proton? (b) Through what potential difference must
it be accelerated to achieve that speed?

Solution: Let us assume relativity is needed, since a femtometer is a very small distance scale,
implying a large energy. We start with deBroglie, and add relativity:

λ = h

p
= h

γmv
= h

√
1− v2/c2

mv
(41)

Now we solve for v

λ2m2v2 = h2 − h2v2

c2 (42)

h2 = v2
(
λ2m2 + h2

c2

)
(43)

v = hc√
h2 + λ2m2c2

= c√
1 + (λmc/h)2

= c√
1 + (λ/λc)2

≈ 0.143c (44)

Again we see the relevant distance scale is the Compton wavelength for the proton, λc=h/mpc ≈
1.32× 1015 m. Given the speed, the kinetic energy is no big deal, particularly noting that mpc

2≈



938MeV:

K = (γ − 1)mc2 ≈ 9.72MeV (45)

Given the proton’s charge of +e, this means we need to move it through a potential difference of
−9.72MV to reach the desired de Broglie wavelength.

5. The Compton shift in wavelength ∆λ is independent of the incident photon energy Ei = hfi.
However, the Compton shift in energy, ∆E = Ef −Ei is strongly dependent on Ei. Find the
expression for ∆E. Compute the fractional shift in energy for a 10 keV photon and a 10MeV
photon, assuming a scattering angle of 90◦.

Solution: The energy shift is easily found from the Compton formula with the substitution λ=
hc/E:

λf − λi = hc

Ef
− hc

Ei
= h

mc
(1− cos θ) (46)

cEi − cEf
EiEf

= 1− cos θ
mc

(47)

∆E = Ei − Ef =
(
EiEf
mc2

)
(1− cos θ) (48)

∆E
Ei

=
(
Ef
mc2

)
(1− cos θ) (49)

Thus, the fractional energy shift is governed by the photon energy relative to the electron’s rest
mass, as we might expect. In principle, this is enough: one can plug in the numbers given for Ei and
θ, solve for Ef , and then calculate ∆E/Ei as requested. This is, however, inelegant. One should
really solve for the fractional energy change symbolically, being both more elegant and enlightening
in the end. Start from Eq. 49 isolate Ef :

Ei − Ef
Ei

= 1− Ef
Ei

= Ef
mc2 (1− cos θ) (50)

1 = Ef

[ 1
Ei

+ 1
mc2 (1− cos θ)

]
(51)

Ef = 1
1/Ei + (1− cos θ) /mc2 = mc2Ei

mc2 + Ei (1− cos θ) (52)

Now plug that back into the expression for ∆E we arrived at earlier, Eq. 49:



∆E
Ei

=
( 1
mc2

)(
mc2Ei

mc2 + Ei (1− cos θ)

)
(1− cos θ) (53)

∆E
Ei

= Ei (1− cos θ)
mc2 + Ei (1− cos θ) =

(
Ei
mc2

)
(1− cos θ)

1 +
(
Ei
mc2

)
(1− cos θ)

(54)

This is even more clear (hopefully): Compton scattering is strongly energy-dependent, and the
relevant energy scale is set by the ratio of the incident photon energy to the rest energy of the
electron, Ei/mc2. If this ratio is large, the fractional shift in energy is large, and if this ratio is
small, the fractional shift in energy becomes negligible. Only when the incident photon energy is an
appreciable fraction of the electron’s rest energy is Compton scattering significant. The numerical
values required can be found most easily by noting that the electron’s rest energy is mc2 =511 keV,
which means we don’t need to convert the photon energy to joules. One should find:

∆E
Ei
≈ 0.02 10 keV incident photon, θ=90◦ (55)

∆E
Ei
≈ 0.95 10MeV incident photon, θ=90◦ (56)

Consistent with our symbolic solution, for the 10 keV photon the energy shift is negligible, while
for the 10MeV photon it is extremely large. Conversely, this means that the electron acquires a
much more significant kinetic energy after scattering from a 10MeV photon compared to a 10 keV
photon.

6. A hydrogen atom is moving at a speed of 125.0m/s. It absorbs a photon of wavelength 97 nm
that is moving in the opposite direction. By how much does the speed of the atom change as a
result of absorbing the photon?

Solution: Just conservation of momentum. Initially, we have the hydrogen’s and photon’s momen-
tum, after we have just the hydrogen. We don’t need relativity, given the low velocity compared
to c.

phi + pph = phf (57)

Given pph=h/λ and ph=mv, and noting the directions,

mvi −
h

λ
= mvf (58)

vf = vi −
h

λm
(59)

∆v = vf − vi = h

λm
(60)



Given a the mass of a hydrogen atom is about 1.67× 10−27 m, ∆v≈4.1m/s.

7. Suppose an atom of iron at rest emits an X-ray photon of energy 6.4 keV. Calculate the “recoil”
momentum and kinetic energy of the atom Hint: do you expect to need classical or relativistic
kinetic energy for the atom? Is the kinetic energy likely to be much smaller than the atom’s rest
energy?

Solution: Same as the last problem. Do we need relativity? Only if the photon energy is compa-
rable to the iron atom’s rest energy. The latter has a mass of about 9.27 × 10−26 kg, implying a
rest energy of mc2≈52GeV. That’s about ten billion times the photon energy, so we are probably
good using classical physics. Now it is just conservation of momentum like the last problem: we
start with an iron atom at rest (p=0), end up with an iron atom and photon going in the opposite
direction. The iron atom and photon must therefore have equal and opposite momentum.

pFe = pph (61)

mv = h

λ
= 1
c

hc

λ
= 1
c
Eph ≈ 3.4× 10−24 kg ·m/s (62)

This implies a recoil velocity of about 37m/s. (Note that the thermal velocity at room temperature
for an iron atom more like 370m/s.) The recoil kinetic energy of the iron atom is then

K = p2

2m ≈ 3.9× 10−4 eV = 0.39meV (63)

8. Time delay in the photoelectric effect. A beam of ultraviolet light of intensity 1.6× 10−12 W is
suddenly turned on and falls on a metal surface, ejecting electrons through the photoelectric effect.
The beam has a cross-sectional area of 1 cm2, and the wavelength corresponds to a photon energy
of 10 eV. The work function of the metal is 5 eV. How soon might one expect photoelectric emission
to occur? Note: 1 eV=1.6× 10−19 J.

(a) One classical model suggests an estimate based on the time needed for the work function energy
(5 eV) to be accumulated over the area of one atom (radius ∼ 0.1 nm). Calculate how long this
would be, assuming the energy of the light beam to be uniformly distributed over its cross section.

(b) Actually, as Lord Rayleigh showed in 1916, the estimate from (a) is too pessimistic. An atom
can present an effective area of about λ2 to light of wavelength λ corresponding to its resonance
frequency. Calculate a time delay on this basis.

(c) On the quantum picture of the process, it is possible for photoelectron emission to begin
immediately – as soon as the first photon strikes the emitting surface. But to obtain a time that



may be compared to the classical estimates, calculate the average time interval between arrival
of successive 10 eV photons. This would also be the average time delay between switching on the
source and getting the first photoelectron. Hint: think of the power as photons per unit time.

Solution: The power absorbed by the atom is the fraction of the beam’s total area that it intercepts
times the total power in the beam. If the beam has power Pb and area Ab, and a circular atom of
radius r has an area πr2, the power absorbed by the atom Pa is

Pa = Pb
πr2

Ab
(64)

If the beam power is constant, then so is the power absorbed by the atom. Constant power means
constant energy per unit time, so the amount of energy ∆E absorbed in a time ∆t by the atom is
∆E=Pa∆t, or

∆t = ∆E
Pa

= ∆EAb
Pbπr2 (65)

The atom needs to absorb an energy of ∆E=5 eV, which will require ∆t≈1.6× 109 s∼50 yr using
the information given. I have it on good authority that this experiment is easily completed in the
PH255 laboratory in a few minutes, so something has gone horribly wrong.

Lord Rayleigh used a more accurate cross-section (recall our discussion of cross sections when we
analyzed radiation) of λ2, which in terms of the light energy E is

λ2 =
(
hc

E

)2
= Aa (66)

This leads to

∆t = ∆E
Pa

= ∆EAb
PbAa

= ∆EAbE2

Pbh2c2 ≈ 3200 s ∼ 1 hr (67)

Better, but still very much wrong.

In the quantum model, the power in the beam is just the number of photons per second times the
energy per photon. If we call the number of photons per unit time ∆N/∆t, and the energy per
photon E

P = ∆E
∆t = E

∆N
∆t = 1.6× 10−12 W (68)

This implies ∆N
∆t ≈ 106 photons/sec, or that on average, 10−6 seconds passes between photons to



account for 106 arriving over the course of one second.


