
PH 253 / LeClair Fall 2013

Problem Set 5 Hints

Daily problem for 14 Oct
(a) Show that the speed of an electron in the nth Bohr orbit of hydrogen is αc/n, where α is the

fine structure constant, equal to e2/4πεo~c≈1/137.
(b) What would be the speed in a hydrogen-like atom with a nuclear charge of Ze?
(c) Let’s say our threshold for worrying about relativistic effects when it amounts to a 10%

correction, where γ = 1.10 (implying v/c ≈ 0.42). For the ground state of a hydrogen-like
atom, for which element do we reach this threshold?

(d) Following the previous question, at what element is the correction 50% (γ=1.5, v/c≈0.745).i

Solution: Since this one was already due, I’ll just give the solution.

(a) Our main condition in deriving the Bohr model was the quantization of angular momentum
(or, if you like, that the electron orbit is an integral number of wavelengths), mvr=n~. We also
figured out that the radius for the nth state is rn=4πεo~2n2/me2. Putting this together,
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(b) For a nuclear charge Z in a hydrogen-like atom of atomic number Z, the Coulomb force between
the nucleus and electron is Z times larger. If you follow back through the Bohr model derivation,
this means that the radius is decreased by a factor Z, and the velocity increased by a factor Z.

v = αcZ

n
(2)

(c) If we want relativistic effects to be less than 10%, v/c≈0.42. That means

v

c
= αZ

n
= 0.42 =⇒ Z = nv

αc
≈ 57 (3)

This means, roughly speaking, that for elements of atomic number 57-58 (Lanthanum and Cerium)
relativistic effects are becoming important (at least for the case where all but one electron is ionized
away, but the rough conclusion holds). For understanding the details of properties like magnetism,
however, we have to worry about relativity much earlier, even for light transition metals like Fe and
Co. For understanding the more subtle and nuanced effects in, say, atomic spectra, even hydrogen
has relativistic corrections to worry about, if your experiment is accurate enough.

iThe inclusion of relativistic effects on electron orbitals has dramatic consequences for heavier elements like Hg:
http://www.rsc.org/chemistryworld/2013/06/why-mercury-liquid-relativity-evidence

http://www.rsc.org/chemistryworld/2013/06/why-mercury-liquid-relativity-evidence


(d) The point at which relativity is a 75% correction, v/c ≈ 0.745 - long past the point when
classical physics will have failed us even qualitatively - comes at

Z = nv

αc
≈ 102 (4)

This is Nobelium. By the time one gets into the actinides, relativity isn’t just a correction, it is
required for even a basic understanding of what’s going on.

Daily problem for 16 Oct The wave function for a particle is given by

ψ(x)=Aeikx +Be−ikx {A,B} ∈ R (5)

Identifying |ψ(x)|2 as a ‘probability density,’ the quantum-mechanical analog of current density isii

j(x) = ~
2mi

(
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

)
(6)

(a) What current does the wave function above represent? Be careful with signs and complex
conjugates.

(b) What is the physical interpretation of your result (hint: the wave function is the sum of right-
and left-traveling waves).

(c) For a bound-state wave function (a wave that isn’t traveling), ψ can be chosen to be purely
real, and ψ∗=ψ. What does this indicate about the current density for bound states?

Solution: You will need the complex conjugate, and derivatives of it and ψ. After that, it is just
plug and chug - it is very messy, and there are plenty of opportunities to mix up signs, etc. If your
result isn’t purely real, you have a problem. There should be no exponential terms left.

What is the physical interpretation? If we let B = 0, the wave function is ψ =Aeikx, so we just
have a plane wave traveling along +x. Think about what the flux means in that case, and in the
corresponding case when A=0.

If ψ is perfectly real, as is the case for a bound state, is there any point to taking complex conjugates?

The remaining problems are due 18 Oct 2013
1. In electromagnetic theory, the conservation of charge is represented by the continuity equation

iiThe current density may be regarded as a ‘probability current’ whose integral over a closed surface is equal to
the rate of change of the probability that the particle will be found inside this surface. You may also note that ~

mi
∂

∂x

is just the operator for the velocity of the particle (compare it to the momentum operator).



(in one dimension)

∂j

∂x
= −∂ρ

∂t
(7)

Make use of the quantum-mechanical probability current density given in the preceding problem.

(a) Show that the continuity equation above is satisfied with the quantum definition of current
density and probability density ρ= |ψ|2. Be careful with signs and complex conjugates, and
note problem 5 part iii.

(b) For a plane wave ψ = Aei(kx−ωt), show that probability current can be written |A|2v = ρv,
where v is the particle’s velocity.

(c) For the same plane wave, show that the probability density has no explicit time dependence.
This illustrates that the particle may be moving (nonzero current) even though the probability
density isn’t changing in time.

Solution: Look at HW6 from F10, and http://en.wikipedia.org/wiki/Probability_current.
(a) Nothing to do but grind through it and see if it works. Start with ∂j/∂x, making liberal use
of the chain rule. Next, find ∂ρ/∂t.

∂ρ

∂t
= ∂

∂t
|ψ|2 = ∂

∂t
(ψ∗ψ) = ∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t
(8)

At this point, you can use the time-dependent Schrödinger equation to replace the time derivatives
with spatial derivatives. You’ll need both the equation and its complex conjugate. You can assume
V is real for convenience. Recall the time-dependent Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∂2ψ

∂x2 + V ψ Schrödinger (9)

This substitutes in for ∂ψ/∂t, take the complex conjugate of the whole thing to substitute for
∂ψ∗/∂t. If you do everything right and plug it all in, it should work.

(b) For a plane wave like Aeikx, you should have found the flux for a plane wave from one of the
daily problems already (try setting B=0 in the problem above).

j = ~k
m
|A|2 (10)

Now you can recall that ~k is the momentum, which you can also write as mv.iii That means
~k/m=p/m=v. It should be straightforward from here.

iiiSince Schrödinger’s equation is not relativistic, we can’t really justify using relativistic momentum.

http://en.wikipedia.org/wiki/Probability_current


(c) Just calculate ρ= |ψ|2 and try to take its time derivative.

2. An electron is in the n=5 state of hydrogen. To what states can the electron make transitions,
and what are the energies of the emitted electrons?

Solution: This is one of your textbook’s problems, from chapter 6 (and an odd one, so you can
see the answer; show your work). From n= 5, the electron can make transitions to all states of
lower n. The energy of a state n is the same as what we found with the Bohr model.

3. Find the directions in space where the angular probability density for the l=2, ml=0 electron
in hydrogen has its maxima and minima.

Solution: Also an odd-numbered textbook problem from chapter 6. You can find the relevant
wave function in your textbook. Have a look at example 7.7 to see how to go about it.

4. What is the probability of finding an n=2, l=1 electron between ao and 2ao?

Solution: And, one more from chapter 6 of your text (but an even-numbered one). Look up the
wave function, and integrate the probability density from ao to 2ao.

5. Links between quantum and classical physics. In classical mechanics, from the definition of
momentum, we can put dx/dt=px/m. In quantum mechanics, this is replaced by a corresponding
relation between expectation values:

d

dt
〈x〉 = 〈px〉

m
(11)

Verify this result with the help of the following outline:

(i) Take the basic definition

〈x〉 =
∫

all x

ψ∗(x, t)xψ(x, t) dx (12)

We do not need to specify the precise form of ψ.
(ii) Taking the time derivative, we find

d
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〈x〉 =

∫
all x

∂ψ∗

∂t
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∫
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ψ∗x
∂ψ

∂t
dx (13)

(On the right, x is just the variable of integration, and is not subject to the d/dt operation.)
(iii) Replace ∂ψ/∂t and ∂ψ∗/∂t by using the time-independent Schrödinger equation and its coun-

terpart for ψ∗:

− ~2

2m
∂2ψ∗

∂x2 + V (x)ψ∗ = −i~∂ψ
∗

∂t
(14)



(iv) Carry out the integrations over all x, taking advantage of the fact that ψ vanishes for x→ ±∞
(integration by parts is involved; what did you get for ∂j/∂x in problem 1?).iv

(v) Use the relationship popψ= ~
i
∂ψ
∂x

Solution: This, and the next one, are really tough. Probably harder than I should have assigned, to
be honest. Given that, I’m including almost the full solution below, but I’ve intentionally redacted
key bits. Fill in the missing steps, using the hints provided, and you have your solution.

Part (i) is given, and part (ii) nothing more than applying the chain rule. For part (iii), we again
need Schrödinger’s equation and its complex conjugate to replace the time derivatives with spatial
derivatives

i~
∂ψ

∂t
= − ~2

2m
∂2ψ

∂x2 + V ψ Schrödinger (15)

−i~∂ψ
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∂x2 + V ψ∗ Schrödinger complex conjugate (16)

Solve for the time derivatives to make the substitution easier.
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Use these substitutions your expression for d〈x〉/dt, figuring out what the “?” bits must be.

d
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Note that the potential terms just cancel out, and come up with a reason why. From problem 1,
you should have found ∂j

∂x , and you can plug this into the what you’ve got. Do that, and integrate
by parts (u=−x, dv=∂j/∂x).

d

dt
〈x〉 =

∫
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−x∂j
∂x

dx = −xj
∣∣∣∣∞
−∞

+
∫

all x
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What to do with this? You know on general grounds that ψ has to vanish a ±∞, otherwise you
would never be able to come up with a finite probability of finding a particle anywhere. If the wave
function tends to zero as x→ ±∞, so does its complex conjugate, and so do their time derivatives.
That means the current density must also be zero as x→ ±∞. Physically, this amounts to saying

ivYou might find http://farside.ph.utexas.edu/teaching/qmech/lectures/node35.html useful. Be careful,
they are not doing exactly what I’m asking you to do.

http://farside.ph.utexas.edu/teaching/qmech/lectures/node35.html


that we can’t have current flowing off to infinity, it must eventually circle back to its source if we
are to have conservation of matter and energy.

That leaves you with just one term. Plug in the definition for j and simplify a bit. Integrate by
parts again (u=ψ, dv=∂ψ∗/∂x) to show

∞∫
−∞

ψ
∂ψ∗

∂x
dx = ψψ∗

∣∣∣∣∞
−∞
−
∞∫
−∞

ψ∗
∂ψ

∂x
dx (21)

The first term is the probability density |ψ|2 evaluated at ±∞. As noted above, the wave function
must vanish at ±∞, and so must |ψ|2. That amounts to saying there is a zero percent chance to
find the particle an infinite distance away. What is left will be proportional to the expectation
value of momentum, and the result will follow. You will have them proved the quantum equivalent
of p=mv=mdx

dt .

6. Referring to the preceding question, see if by means of a similar approach you can obtain the
quantum-mechanical counterpart of Newton’s second law:

d

dt
〈px〉 = 〈Fx〉 = 〈−∂V

∂x
〉 (22)

Solution: This is in principle no less tedious than the previous one, but you will be able to reuse
several key intermediate results. Both are specific consequences of Ehrenfest’s theorem, which is
frankly more than we want to go in to here. Anyway: start with the definition of 〈p〉. Presume all
integrals to be over [−∞,∞].

〈p〉 =
∫
ψ∗

~
i

∂ψ

∂x
dx (23)

Now we can use a result you should have from the previous problem

〈p〉 = m
d〈x〉
dt

= m

∫
j dx (24)

Plug in the definition of current density. Again from the last problem you know

∞∫
−∞

ψ
∂ψ∗

∂x
dx = −

∞∫
−∞
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∂x
dx (25)

From this point on, you might find the discussion at http://farside.ph.utexas.edu/teaching/
qmech/lectures/node35.html useful. That discussion skips some key steps, you should not (or

http://farside.ph.utexas.edu/teaching/qmech/lectures/node35.html
http://farside.ph.utexas.edu/teaching/qmech/lectures/node35.html


at least you should more explicitly justify what you’re doing). What you’ll have proved is the
quantum equivalent of Newton’s law F = dp

dt =−dU
dx .

7. Find the most probable radius and the expected value of the radial position 〈r〉 of an electron
in the 2p state.

ψ2p = 1
√

3 (2ao)3/2
r

ao
e−r/2ao (26)

where a0 = 4πε0~2

mee2 =0.529×10−10 m is the Bohr radius.

Solution: The most probable radius is obtained by finding the probability density P = 4πr2|ψ|2

and finding its maximum. The expectation value is found as above, 〈x〉=
∫
x|ψ|24πr2 dr.


