
PH 253 / LeClair Fall 2013

Problem Set 6 Solutions

Daily problem for 25 Oct On last week’s homework, you proved (presumably) that in quantum
mechanics one can find the average force from the average gradient of the potential:

〈Fx〉 =
〈
−∂V
∂x

〉
(1)

Use this result to verify that the average force on a particle in a simple harmonic oscillator potential
(V = 1

2mω
2x2) is zero. You may restrict your solution to the ground state, whose wave function

you can find readily in your text.

Solution: First we need to find ∂V/∂x. Easy enough.

∂V

∂x
= ∂

∂x

1
2mω

2x2 = mω2x (2)

The average vale of force is then

〈Fx〉 =
〈
−∂V
∂x

〉
=

∞∫
−∞

−∂V
∂x
|ψ|2 dx (3)

We know the ground state of the simple harmonic oscillator has a wavefunction of the form Ae−x2/a2

(the constants will not matter). Thus,

〈Fx〉 =
∞∫
−∞

−∂V
∂x
|ψ|2 dx = −

∞∫
−∞

mω2xAe−2x2/a2
dx = 0 (4)

This is an odd function, and by inspection it integrates to zero. In fact, this is a general result -
the square of any wave function is going to be an even function, and so long as the potential is
also an even function, its derivative is an odd function and the result will be zero. This is just a
mathematical expression of the fact that a particle will sit at equilibrium with zero net force at the
center of an attractive potential.

Daily problem for 28 Oct (a) How many different sets of quantum numbers (n, l,ml,ms) are
possible for an electron on the 4f level? (b) Suppose a certain atom has three electrons in the 4f
level. What is the maximum possible value of the total ms of the three electrons? (c) What is the
maximum possible total ml of three 4f electrons? (d) Suppose an atom has ten electrons in the
4f level. What is the maximum possible value of the total ms of the ten 4f electrons? (e) What
is the maximum possible total ml of ten 4f electrons?



The remaining problems are due 30 Oct 2013
1. Variational Principle I. The energy of a system with wave function ψ is given by

E[ψ] =
∫
ψ∗Hψ dV∫
|ψ|2 dV

(5)

where H is the energy operator. The variational principle is a method by which we guess a trial
form for the wave function ψ, with adjustable parameters, and minimize the resulting energy with
respect to the adjustable parameters. This essentially chooses a “best fit” wave function based on
our guess. Since the energy of the system with the correct wave function will always be minimum,
our guess will always lead to an energy which is slightly too high, but the variational principle
allows us to get as close as possible to the correct energy with our trial wave function.

Use the variational principle to estimate the ground state energy for the anharmonic oscillator,

H = p2

2m + λx4 i.e., Hψ = − ~2

2m
∂2ψ

∂x2 + λx4ψ (6)

Compare your result with the exact result

Eo = 1.060λ1/3
(

~2

2m

)2/3

(7)

Note that this is a one-dimensional problem, so take dV =dx. The wavefunction for the harmonic
oscillator ground state might not be a bad choice, ψ=e−cx2 , though many other choices are possible.

Solution: The easiest thing to do is see how bad the normal harmonic oscillator solution is, so
we will take ψ=e−cx2 . First we need to find Hψ.

Hψ = − ~2

2m
∂2ψ

∂x2 + λx4ψ = − ~2

2m
∂2

∂x2 e
−cx2 + λx4e−cx2 (8)

= − ~2

2m
∂

∂x

(
−2cxe−cx2)+ λx4e−cx2 = − ~2

2m
(
2ce−cx2) (2cx2 − 1

)
+ λx4e−cx2 (9)

Next, we multiply by ψ again to get ψHψ, and integrate that over all space. Multiplying by ψ just
makes the exponents all −2cx2.

∫
ψHψ dV =

∞∫
−∞

− ~2

2m
(
2ce−2cx2) (2cx2 − 1

)
+ λx4e−2cx2

dx (10)

=
∞∫
−∞

e−2cx2
(
λx4 − 2~2c2

m
x2 + ~2c

m

)
(11)



All the integrals are known (you can ask Wolfram):

∫
ψHψ dV = λ

3
16

√
π

2c5 −
2~2c2

m

1
4

√
π

2c3 + ~2c

m

√
π

2c = 3λ
16

√
π

2c5 + ~2

2m

√
πc

2 (12)

=
√
π

2c

(
3λ
16

1
c2 + ~2

2mc

)
(13)

The denominator in the variational expression is simpler:

∞∫
−∞

ψ2 dx =
∞∫
−∞

e−2cx2
dx =

√
π

2c (14)

Our energy expression is thus

E[ψ] =
∫
ψ∗Hψ dV∫
|ψ|2 dV

= 3λ
16c2 + ~2c

2m (15)

To minimize the energy with this wavefunction, we require dE/dc=0.

dE

dc
= − 6λ

16c3 + ~2

2m = 0 (16)

=⇒ c = 3

√
3λm
4~2 (17)

Now we plug that back in our expression for E to find the minimum energy and simplify.

Emin = 3λ
16c2 + ~2c

2m = 3λ
16

(
4~2

3λm

)2/3

+ ~2

2m

(3λm
4~2

)1/3
(18)

= 3
16λ

1/3
(

~2

2m

)2/3 (8
3

)2/3
+ 1

2λ
1/3
(

~2

2m

)2/3

31/3 =
(

3 3√3
4

)
λ1/3

(
~2

2m

)2/3

(19)

≈ 1.082λ1/3
(

~2

2m

)2/3

(20)

This differs from the exact result by only ∼2%. Not bad!

2. Variational Principle II. Repeat the problem above with a different trial wave function. You
know physically a trial function must be peaked around x = 0 and must be normalizable (i.e.,∫∞
−∞ ψ

2 dx is finite). Such functions would include e−c|x| or 1/(c+ x2), for instance. Choose wisely,
and the mathematics will be far simpler.

Solution: Same drill, different function. How do we pick an appropriate function? What prop-
erties should your wave function have for the ground state? We can come up with a few rules by



looking at the potential and thinking about the generic properties of wavefunctions. First, for the
lowest energy state the function should be even and peaked near x=0, just like it is for the simple
harmonic oscillator. Second, it should be normalizable (i.e., the integral of the function squared
over all space should be finite). Third, for the variational integral to converge, the square of the
wavefunction must decay faster than x4, since we have to integrate |ψ|2x4 over all space and come
up with a finite answer.

This is already pretty restrictive, when you get down to it. For instance, 1/(x2 +a2) will not work,
since when squared and multiplied by x4, its integral will not converge. You’ll run in to weirder
problems trying things like e−x4 , pushing the analogy with the harmonic oscillator. Just to cut to
the chase, one thing that does work is 1/(x2 + a)2. (It is not even that messy if you let Wolfram
do the heavy lifting.) This isn’t the only possibility, certainly. You might just try two Gaussians
with two adjustable parameters, or possibly e−a|x|. We’ll try ψ=1/(x2 + a2)2. First, we need the
second derivative.

∂2ψ

∂x2 = 4
(
5x2 − a2)

(a2 + x2)4 (21)

With that, we can find Hψ

Hψ = − ~2

2m
4
(
5x2 − a2)

(a2 + x2)4 + λx4 1
(a2 + x2)2 (22)

Now, ψHψ just means multiplying through by ψ again:

ψHψ = − ~2

2m
4
(
5x2 − a2)

(a2 + x2)6 + λx4 1
(a2 + x2)4 (23)

With Wolfram’s help, we can integrate it over all spacei

∫
ψHψdV =

∞∫
−∞

− ~2

2m
4
(
5x2 − a2)

(a2 + x2)6 + λ
x4

(a2 + x2)4 dx

= −2~2

m

( 35π
256a9 −

63πa2

256a11

)
+ λ

π

16a3 = −~2

128ma9

(
35π − 63π

)
+ πλ

16a3

= 7π~2

32ma9 + πλ

16a3 = π

16a3

(
λ+ 7~2

2ma6

)
(24)

iNote that you can tell Wolfram to include limits to the integral, which simplifies things a lot. Compare typing in
integral of x^2/(a =^2+x^2)^6 from -infinity to infinity to integral of x^2/(a^2+x^2)^6. Nice, right?



Now we need the denominator in our variational expression, the normalization condition:

∫
|ψ|2 dV =

∞∫
−∞

1
(x2 + a)4 dx = 5π

16a7 (25)

Combining and factoring a bit,

E[ψ] =
∫
ψ∗Hψ dV∫
|ψ|2 dV

= π

16a3

(
λ+ 7~2

2ma6

)
· 16a7

5π = a4

5

(
λ+ 7~2

2ma6

)
= 1

5a
4λ+ 7~2

10ma2 (26)

To minimize the energy with this wavefunction, we require dE/da=0.

dE

da
= 4

5a
3λ− 7~2

5ma3 (27)

=⇒ a = 6

√
7~2

4mλ (28)

Inserting this into our energy expression, we have the minimum energy

Emin = 1
5a

4λ+ 7~2

10ma2 = λ

5

(
7~2

4mλ

)2/3

+ 7~2

10m

(4mλ
7~2

)1/3
(29)

= λ1/3
(

~2

2m

)2/3 [1
5

(7
2

)2/3
+ 7

10

(16
7

)1/3
]

= λ1/3
(

~2

2m

)2/3 [3
5

(7
2

)2/3
]

(30)

≈ 1.38λ1/3
(

~2

2m

)2/3

(31)

This trial wave function is off by about 30%, not nearly as good as just using the harmonic oscillator
solution as our guess.

3. The two figures below show small sections of two different possible surfaces of a NaCl surface.
In the left arrangement, the NaCl(100) surface, charges of +e and −e are arranged on a square
lattice as shown. In the right arrangement, the NaCl(110) surface, the same charges are arranged
in a rectangular lattice. (a) What is the potential energy of each arrangement (symbolic answer)?
(b) Which is more stable?

+ -

- +

+ +

- -

a

a a
√

2

a



Solution: We need only add up the potential energies of all possible pairs of charges. In each case
we have four charges, so there must be

(4
2
)
=6 combinations. Let the upper left charge be q1, and

number the charges in a clockwise fashion. The combinations are thus

q1q2, q1q3, q1q4 (32)

q2q3q2q4 (33)

q3q4 (34)

For either arrangement,t he energy is then

U = keq1q2
r12

+ keq1q3
r13

+ keq1q4
r14

+ keq2q3
r23

+ keq2q4
r24

+ keq3q4
r34

(35)

For the first arrangement, NaCl(100), we need only plug in the distances and charges:

U100 = −kee
2

a
+ kee

2

a
√

2
+ −kee

2

a
+ −kee

2

a
+ kee

2

a
√

2
+ −kee

2

a
= ke2

a

(
−4 +

√
2
)
≈ −2.58ke

2

a
(36)

For the second arrangement, NaCl(110), we have:

U110 = kee
2

a
√

2
+−kee

2

a
√

3
+−kee

2

a
+−kee

2

a
+−kee

2

a
√

3
+ kee

2

a
√

2
= ke2

a

(
−2 +

√
2− 2√

3

)
≈ −1.74ke

2

a
(37)

Since U100<U110, the (100) surface is more stable, in agreement with experiments.

4. Energetics of diatomic systems An approximate expression for the potential energy of two ions
as a function of their separation is (treating the problem one dimensionally),

V = −ke
2

x
+ b

x9 (38)

The first term is the usual Coulomb interaction, while the second term is introduced to account
for the repulsive effect of the two ions at small distances. (a) What is the equilibrium spacing xo?
(b) Find b as a function of the equilibrium spacing xo. (c) For NaCl, with an equilibrium spacing
of ro = 0.236 nm, calculate the frequency of small oscillations about x = xo. Hint: do a Taylor
expansion of the potential energy to make it look like a harmonic oscillator for small x=xo.

Solution: The equilibrium spacing will be characterized by the net force between the ions being
zero, or equivalently, the potential energy being zero:



F (ro) = −dU
dr

∣∣∣∣
r=ro

= 0 = ke2

r2
o

− 9b
r10

o

(39)

ke2r8
o = 9b (40)

b = 1
9ke

2r8
o (41)

Substituting this result back into our potential energy expression, we can find the potential energy
at equilibrium, how much energy is gained by the system of ions condensing into a crystal. First,
the potential energy as a function of spacing:

PE = U(r) = −ke
2

r
+ ke2r8

o

9r9 (42)

Evaluating at equilibrium, ro =0.279 nm,

U(ro) = −ke
2

ro
+ ke2

9ro
= −8ke2

9ro
≈ −5.42 eV (43)

The frequency of small oscillations can be found by Taylor expanding the potential about equilib-
rium for small displacements from equilibrium:

U(r − ro) ≈ U(ro) + U ′(ro) (r − ro) + 1
2U
′′(ro) (r − ro)2 (44)

The first term in the expansion is just the potential energy at equilibrium which we found above.
The second term, linear in displacement, must vanish at equilibrium (which is exactly the condition
we enforced to find b, after all). The third term is quadratic in displacement, just as it would be
for a simple harmonic oscillator, U= 1

2k (r − ro)2. Thus, the coefficient of the quadratic term must
be 1

2k, which means the frequency of small oscillations is ω=
√
k/µ, where µ is the reduced mass

of the system:

µ = mNamCl
mNa +mCl

≈ 13.95 u = 2.32× 10−26 kg (45)

That is, the diatomic molecule looks like two masses coupled by a spring.

1
2k = 1

2U
′′(ro) (46)

k = U ′′(ro) = −2ke2

r3
o

90b
r11

o

= 8ke2

r3
o

≈ 140N/m (47)

ω =
√
k

µ
= 2πf (48)



The frequency of oscillation f is then

f = 1
2π

√
k

µ
≈ 1.24× 1013 Hz ≈ 414 cm−1 (49)

A reliable experimental value is about 365 cm−1, in good agreement with our simple model.ii

5. A collection of hydrogen atoms is placed in a magnetic field of 3.50T. Ignoring the effects of
electron spin, find the wavelengths of the three normal Zeeman components of (a) the 3d to 2p
transition, (b) the 3s to 2p transition.

Solution: In a magnetic field B, the energy levels for a given l state will split according to their
value ofml. If the original energy of the level is El, then the original level will be split symmetrically
into 2l + 1 sub-levels, with adjacent levels shifted by µBB:

El,ml
= El +mlµBB (50)

This is shown schematically below for l= 2 and l= 1 levels. The 3d (l= 2) level has possible ml

values of ml = {−2,−1, 0, 1, 2}, and thus in a magnetic field B what was a single level is now 5
individual levels. For the 2p (l=1) level, we have ml values of only ml ={−1, 0, 1}, and the original
level becomes a triplet upon applying a magnetic field.

l=2

l=1

∆Eo

0

Eo

2

1

−1

−2

ml

0

1

−1

B=0 B �=0

Figure 1: Allowed transitions from l=2 to l=1 with a magnetic field applied.

Before calculating anything, we can apply the dipole selection rules, which states that ml can
change by only {0,±1}. This means that, for example, from the l=2, ml =1 sub-level an electron
may “jump” to the any of the l=1, ml ={2, 1, 0} sub-levels. On the other hand, from l=2, ml =2
sub-level an electron may only jump to the l= 1, ml = 1 sub-level. Following these rules, we see
from the figure above that there are only 9 possible transitions allowed. Further, noting that the
levels are equally spaced, we have in fact only three different transition energies.

iiSee http://scitation.aip.org/content/aip/journal/jpcrd/36/2/10.1063/1.2436891.

http://scitation.aip.org/content/aip/journal/jpcrd/36/2/10.1063/1.2436891


The spacing between the levels ∆E is the Zeeman energy given above, ∆E = µBB. From our
schematic above, it is clear that the only possible transition energies in a magnetic field are the
original transition energy (no change in ml), or the original transition energy plus or minus ∆E (ml

changes by ±1). The original transition energy E and the corresponding wavelength λ is readily
found from our knowledge of the hydrogen atom

E = E3 − E2 = −13.6 eV
( 1

32 −
1
22

)
= 1.89 eV =⇒ λ = hc

E
= 656nm (51)

(In the calculation of λ we useThus, the new transition energies must be

E 7−→ {E −∆E,E,E + ∆E} = {E − µBB,E,E + µBB} (52)

That is, the original transition energy plus two new ones. We can easily convert these two new
energies into two new wavelengths by the energy-wavelength relationship E=hc/λ. However, this
does require some numerical precision (i.e., carrying at least 7-8 digits in your calculations, and
knowing the requisite constants to commensurate precision), and it is somewhat easier to simply
calculate the change in energy by itself. You can do this with propagation of uncertainty, if you
aren’t familiar with it we will just quote the result:

∣∣∆λ∣∣ =
∣∣∣∣ dλdE

∣∣∣∣∆E = hc

E2 ∆E = λ2

hc
∆E (53)

Since we know the energy changes by ∆E and the base energy is E,

∣∣∆λ∣∣ = λ2∆Eo

hc
= λ2µBB

hc
≈ 0.07nm (54)

The shift in energy of ∆Eo implies a shift in wavelength of ∆λ ≈ 0.070 nm, meaning the new
transitions must be at the original wavelength λ=656 nm plus or minus ∆λ=0.07nm.

6. Consider a hydrogen atom and a singly-ionized helium atom (i.e., Bohr-like). Which atom has
the lower ground state energy, and how big is the difference? Justify your answer with an explicit
calculation, even if it is just an order-of-magnitude estimate.

Solution: For a hydrogen-like system (i.e., nucleus plus one electron) with Z protons in the nu-
cleus, the net attractive energy of the proton and electron will scale as Z. That’s one reason already
that the helium atom will be more stable, the electron is simply more attracted to the nucleus. A
second factor of Z comes in through the quantization of angular momentum, but the conclusion
does not change. If you work out the Bohr model energy levels from the start with a nuclear



charge of +Ze rather than just +e, you’ll find the energies scale as Z2.iii The higher Z is, the more
negative the electron energies are, and the more stable the atom.

We can estimate the difference as being a factor of Z2
He =4 compared to the hydrogen ground state

energy, or −13.6 eV · 3≈54.4 eV, which is a very good estimate.

iiiSee http://en.wikipedia.org/wiki/Bohr_model#Electron_energy_levels

http://en.wikipedia.org/wiki/Bohr_model#Electron_energy_levels

