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Department of Physics and Astronomy

PH 253 / LeClair Spring 2010

Problem Set 2: Black-Body Radiation

Instructions:
1. Answer all questions below.
2. Show your work for full credit.
3. All problems are due Thurs 28 January 2010 by the end of the day.
4. You may collaborate, but everyone must turn in their own work.

1. Leighton, 2.4 As a function of wavelength, Planck’s law states that the emitted power of a black
body per unit area of emitting surface, per unit wavelength is

I(λ, T ) =
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

(1)

That is, I(λ, T )dλ gives the emitted power per unit area emitted between wavelengths λ and
λ + dλ. Show by differentiation that the wavelength λm at which I(λ, T ) is maximum satisfies the
relationship

λmT = b (2)

where b is a constant. This result is known as Wien’s Displacement Law, and can be used to
determine the temperature of a black body radiator from only the peak emission wavelength. The
constant above has a numerical value of b=2.9 × 106 nm-K. Note: at some point you will need to
solve an equation numerically. Advice will be given in lecture.

2. As a function of frequency, Planck’s law states that the spectral energy density of a black body,
the energy per unit volume per unit frequency, is given by

u(f, T ) =
8πhf3

c3

[
e

hf
kbT − 1

]−1

(3)

If you think of a black body as an insulated, perfectly mirrored box with a tiny hot object inside,
u(f, T ) would give the energy per unit volume of radiation with frequencies between f and f + df .



Integrating this energy density over all frequencies, one obtains the total energy per unit volume
V . Show that the total emitted power per unit volume is proportional to T 4. Specifically,

U(T )
V

=

∞∫
0

u(f, T ) = σT 4 (4)

Here σ is a constant. This result is essentially the Stefan-Boltzmann law. The following integral
may be useful:

∞∫
0

x3

ex − 1
dx = ζ(4)Γ(4) =

π4

90
× 6 =

π4

15
(5)

A clever substitution might be to define a variable x=hf/kbT .

3. Leighton, 2.8 The wavelength of maximum intensity in the solar spectrum is about 500 nm, as
some of you will verify in PH255. Assuming the sun radiates as a black body, compute its surface
temperature.

4. In the figure below, the measured intensity as a function of wavelength is shown for a 60 W
incandescent bulb at various supply voltages V . (You may ignore the smaller secondary peaks at
higher wavelengths, they are due to a phosphorescent coating on the inside of the bulb.) A larger
version of this plot is on the last page; raw data is available upon request.

4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 00
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0

 

 

Int
ens

ity
 (a

.u.
)

λ ( n m )

 1 0 0 V
   8 0 V
   6 0 V  ( x 2 )

Figure 1: Spectrum of a 60 W soft white incandescent bulb at three different supply voltages, measured in the PH255 lab.
Note that the 60 V curve has been multiplied by a constant factor!

(a) Assuming the bulb filament radiates as a perfect black body, the wavelength at which peak
intensity occurs should be inversely proportional to temperature, λm = b/T with b=2.9× 106 nm-
K. Estimate the peak position for each curve. Plot the resulting estimated filament temperature



versus the relative electrical power supplied to the filament. You may assume the bulb has constant
resistance, such that the power supplied to the bulb is proportional to V 2. Do the results make
sense?
(b) The total emitted power is proportional to the area under the intensity-wavelength graph.
Roughly estimate the area under the curves for each voltage. This in turn should be proportional
to the bulb temperature to the fourth power, T 4. Plot the estimated area versus for each curve
versus T 4 using your temperature estimates from part a. Is the Stefan-Boltzmann law obeyed,
within your margin of error?
(c) Is the bulb a reasonable approximation of a black body? You may want to check the melting
point of the tungsten filament.

(something to think about, not to turn in) Compare your spectra qualitatively to the solar
spectrum, e.g., http://en.wikipedia.org/wiki/Sunlight. Can you understand why incandes-
cent bulbs at particular powers are favored for indoor lighting? Why is “color temperature” used
to characterize such lighting sources?

5. Frank, 20.16 Compute the ratio of the increase of intensity of black-body radiation at a wave-
length of 641 nm for an increase of temperature from 1200 to 1500 K.

6. An accelerating charge loses electromagnetic energy at a rate of

P =
∆E

∆t
= −2keq

2a2

3c3

where ke is Coulomb’s constant, q is the charge of the particle, c is the speed of light, and a is the
acceleration of the charge. Assume that an electron is one Bohr radius (a0 = 0.053 nm) from the
center of a Hydrogen atom, with the proton stationary. (a) Find the acceleration of the electron
(hint: circular path). (b) Calculate the kinetic energy of the electron and determine within an
order of magnitude how long it will take the electron to loose all of its energy, assuming a constant
acceleration as found in part a. Be sure to point out whether you need to consider relativistic
effects or not (hint: how big is v/c if you ignore relativity?).

7. Assuming that the human body has a surface area of 2 square meters and radiates like a black
body at a temperature of 35◦C, calculate the rate at which it loses heat in surroundings that have
a temperature of 15◦C.

http://en.wikipedia.org/wiki/Sunlight
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Figure 2: Spectrum of a 60 W soft white incandescent bulb at various supply voltages. Note that some curves have been
multiplied by a constant factor to make all curves visible!


