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Problem Set 2: Solutions

1. Leighton, 2.4 As a function of wavelength, Planck’s law states that the emitted power of a black
body per unit area of emitting surface, per unit wavelength is

I(λ, T ) =
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

(1)

That is, I(λ, T )dλ gives the emitted power per unit area emitted between wavelengths λ and
λ + dλ. Show by differentiation that the wavelength λm at which I(λ, T ) is maximum satisfies the
relationship

λmT = b (2)

where b is a constant. This result is known as Wien’s Displacement Law, and can be used to
determine the temperature of a black body radiator from only the peak emission wavelength. The
constant above has a numerical value of b=2.9 × 106 nm-K. Note: at some point you will need to
solve an equation numerically. Advice will be given in lecture.

First, we must find dI/dλ. Strictly, we want ∂I/∂λ, since we are presuming constant temperature,
but that is only a formal point since T does not depend on λ. For convenience, define the following
substitutions:

a ≡ 8πhc2 (3)

b ≡ hc

kT
(4)

Thus,

I(λ, T ) =
8πhc2

λ5

[
e

hc
λkbT − 1

]−1 a

λ5

[
e

b
λ − 1

]−1
(5)

dI

dλ
=
−5a

λ6

1

e
b
λ − 1

+
−a

λ5

(
1

e
b
λ − 1

)2
(
−be

b
λ

λ2

)
=
( a

λ7

) be
b
λ − 5λe

b
λ + 5λ(

e
b
λ − 1

)2 = 0 (6)



Finding the maximum of I(λ, T ) with respect to λ means setting dI(λ, T )/dλ=0.i The denominator
in the equation above is then irrelevant, as is the λ−7 prefactor, and we have
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We can make another substitution to make things easier. Define x≡ b
λ = hc

λkT and simplify:

xex

ex − 1
− 5 = 0 (10)

If we find the root of this equation, we have (after undoing our substitutions) the value of λ for
which I(λ, T ) is maximum. Unfortunately, there is no analytic solution. Using Newton’s method
or something similar,ii we find the root is

x =
hc

λkT
≈ 4.695 (11)

Solving for λ, we obtain the desired result:

λmax ≈
hc

4.965kT
≈ 2.898× 106 nm ·K

T
(12)

2. As a function of frequency, Planck’s law states that the spectral energy density of a black body,
the energy per unit volume per unit frequency, is given by

u(f, T ) =
8πhf3

c3

[
e

hf
kbT − 1

]−1

(13)

If you think of a black body as an insulated, perfectly mirrored box with a tiny hot object inside,
u(f, T ) would give the energy per unit volume of radiation with frequencies between f and f + df .
Integrating this energy density over all frequencies, one obtains the total energy per unit volume

iSince we know the curve is concave downward, we won’t bother with the second derivative test; we know very
well we will find a maximum and not a minimum.

iiSee the appendix at the end of this document for some C code that does the job.



V . Show that the total emitted power per unit volume is proportional to T 4. Specifically,

U(T )
V

=

∞∫
0

u(f, T ) df = σT 4 (14)

Here σ is a constant. This result is essentially the Stefan-Boltzmann law. The following integral
may be useful:

∞∫
0

x3

ex − 1
dx = ζ(4)Γ(4) =

π4

90
× 6 =

π4

15
(15)

A clever substitution might be to define a variable x=hf/kbT .

All we need to do is integrate. It will be less messy with the following substitution:

x =
hf

kT
(16)

=⇒ f =
xkT

h
(17)

=⇒ df =
kT

h
dx (18)

The limits of integration remain the same, 0 and ∞. You did remember the df , right? With these
substitutions, we have

U(T )
V

=

∞∫
0

u(f, T ) df =

∞∫
0

u(x, t)
kT

h
dx (19)

=
8π (kT )3

c3h2

∞∫
0

x3

ex − 1

(
kT

h

)
dx =

8π (kT )4

c3h3

∞∫
0

x3

ex − 1
dx (20)

The integral is now dimensionless (i.e., it has no units), and is in the end just some number. It
happens to be π4/15, but this has no real physical significance.iii We have already established the
proportionality with T 4. Plugging in the value of the integral,

U(T )
V

=
8π5 (kT )4

15c3h3
=

4σT 4

c
(21)

Here σ is the Stefan-Boltzmann constant, which is the proportionality between power and T 4.
iiiWe provide a derivation in the appendix at the end of this document.



3. Leighton, 2.8 The wavelength of maximum intensity in the solar spectrum is about 500 nm, as
some of you will verify in PH255. Assuming the sun radiates as a black body, compute its surface
temperature.

The Wien displacement law from problem 1 is all we need:

T =
2.898× 106 nm ·K

λmax
≈ 5800 K (22)

4. In the figure below, the measured intensity as a function of wavelength is shown for a 60 W
incandescent bulb at various supply voltages V . (You may ignore the smaller secondary peaks at
higher wavelengths, they are due to a phosphorescent coating on the inside of the bulb.) A larger
version of this plot is on the last page; raw data is available upon request.
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Figure 1: Spectrum of a 60 W soft white incandescent bulb at three different supply voltages, measured in the PH255 lab.
Note that the 60 V curve has been multiplied by a constant factor!

(a) Assuming the bulb filament radiates as a perfect black body, the wavelength at which peak
intensity occurs should be inversely proportional to temperature, λm = b/T with b=2.9× 106 nm-
K. Estimate the peak position for each curve. Plot the resulting estimated filament temperature
versus the relative electrical power supplied to the filament. You may assume the bulb has constant
resistance, such that the power supplied to the bulb is proportional to V 2. Do the results make
sense?
(b) The total emitted power is proportional to the area under the intensity-wavelength graph.
Roughly estimate the area under the curves for each voltage. This in turn should be proportional
to the bulb temperature to the fourth power, T 4. Plot the estimated area versus for each curve
versus T 4 using your temperature estimates from part a. Is the Stefan-Boltzmann law obeyed,
within your margin of error?



(c) Is the bulb a reasonable approximation of a black body? You may want to check the melting
point of the tungsten filament.

(something to think about, not to turn in) Compare your spectra qualitatively to the solar
spectrum, e.g., http://en.wikipedia.org/wiki/Sunlight. Can you understand why incandes-
cent bulbs at particular powers are favored for indoor lighting? Why is “color temperature” used
to characterize such lighting sources?

In order to calculate the temperature of the bulb from the given spectra, we first assume that the
bulb at least roughly behaves a blackbody radiator, and thus Wien’s displacement law applies.
From the wavelength at which the spectra peaks, we can find the temperature from λpeak = b/T .
In my case, I find

λpeak ≈ 648 nm 100 V (23)

λpeak ≈ 660 nm 80 V (24)

λpeak ≈ 670 nm 60 V (25)

Assuming a constant bulb resistance, the electrical power supplied is V 2/R. Below, we plot the
temperature obtained versus relative power (with 100 V arbitrarily defined as 100% power). The
error bars represent the estimated error in peak wavelength determination δλ propagated to a
temperature uncertainty via∣∣∣∣δλλ

∣∣∣∣ = ∣∣∣∣δTT
∣∣∣∣ (26)

This result does make sense: the total radiated power should scale with the total applied electrical
power!
For verifying the Stefan-Boltzmann law, we numerically integrated the given curves from the raw
data using a simple trapezoid rule in Excel, also estimating the relative error in the standard
manner.iv Uncertainty in T 4 was propagated according to∣∣∣∣δT 4

T

∣∣∣∣ = 4
∣∣∣∣δTT

∣∣∣∣ (27)

The uncertainty bars on T 4 are not visible on this scale. Within the limits of uncertainty, the
Stefan-Boltzmann law is obeyed.
The bulb is not an ideal blackbody, for two very simple reasons: first, it is not black, and thus
does not absorb all incident radiation; second, the estimated temperature is well above the melting

ivSee http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis

http://en.wikipedia.org/wiki/Sunlight
http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis
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Figure 2: Bulb temperature obtained from the Wien displacement law versus electrical power, assuming a constant bulb
resistance. The red line is a best-fit using a weighted linear regression.

point of the tungsten filament! One can come up with many other reasons, but either one of these
two is sufficient . . .

As for the last part, you may find http://en.wikipedia.org/wiki/Color_temperature interest-
ing.

5. Frank, 20.16 Compute the ratio of the increase of intensity of black-body radiation at a wave-
length of 641 nm for an increase of temperature from 1200 to 1500 K.

Intensity versus wavelength is quoted in problem 1. The ratio of intensities for a given wavelength
λ=641 nm at temperatures T1 = 1500 K and T2 =1200 K is then

I(λ, T1)
I(λ, T2)

=

8πhc2

λ5

[
e

hc
λkbT1 − 1

]−1

8πhc2

λ5

[
e

hc
λkbT2 − 1

]−1 =
e

hc
λkbT1 − 1

e
hc

λkbT2 − 1
≈ 42 (28)

As you can see, it is much more clever to solve the problem symbolically before using the numbers
given. In the opposite case, one ends up performing a great deal of unnecessary calculations.

6. An accelerating charge loses electromagnetic energy at a rate of

P =
∆E

∆t
= −2keq

2a2

3c3

where ke is Coulomb’s constant, q is the charge of the particle, c is the speed of light, and a is the

http://en.wikipedia.org/wiki/Color_temperature
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Figure 3: Total radiated power, determined by finding the area under the I(λ) curve, versus estimated temperature to the
fourth power. The red line is a best-fit using a weighted linear regression.

acceleration of the charge. Assume that an electron is one Bohr radius (a0 = 0.053 nm) from the
center of a Hydrogen atom, with the proton stationary. (a) Find the acceleration of the electron
(hint: circular path). (b) Calculate the kinetic energy of the electron and determine within an
order of magnitude how long it will take the electron to loose all of its energy, assuming a constant
acceleration as found in part a. Be sure to point out whether you need to consider relativistic
effects or not (hint: how big is v/c if you ignore relativity?).

The electron circulating around the proton has only one relevant force, the Coulomb interaction
with the proton. This force must provide the centripetal force if the electron is to remain on a
circular path:

qE =
keq

2

r2
= macent

mv2

r
=⇒ acent =

kq2

mr
∼ 9× 1022 m/s2 (29)

Given that acent=v2/r, we also readily find the velocity:

v =
√

acentr =

√
keq2

mr
≈ 2× 106 m/s (30)

Since v ∼ 0.01c, we are justified in not using relativistic corrections. The kinetic energy is then
simply

K =
1
2
mv2 =

keq
2

2r
≈ 2.17× 10−18 J ≈ 13.6 eV (31)



Basically, we have just reproduced the lowest energy level of the hydrogen atom - also known as
the ionization energy.

How long is this classical atom stable? We should remember at this point that power is energy
per unit time. The power in this case means how much energy we are loosing per unit time, hence
the negative sign. What we want to find is how long it will take for the electron to loose all of
its energy, the whole kinetic energy we just calculated. If, just to obtain an order of magnitude
estimate, we assume that the rate of energy loss is constant,

P =
2keq

2a2

3c3
=

2k3
eq

6

3m2c3r4
=

∆E

∆t
=

K

∆t

=⇒ ∆t =
K

P
=

3m2c3r3

4k2
ee

4
∼ 5× 10−11 s

Thus, if we can calculate the power - the rate of energy loss - using the (now) known acceleration
a and various fundamental constants, we can use the kinetic energy to find out how long it takes
the electron to loose all of its energy.

Of course, there are many many problems with this analysis. First, the whole orbiting electron
model is a kludge of sorts, we know it to be deeply flawed (though still useful). Second, it is perhaps
silly to think that the electron looses energy at a constant rate as it continues on its death spiral.
Finally, we will soon know better – atoms are indeed stable, and the answer lies in the wave-like
nature of matter and the uncertainty principle.

7. Assuming that the human body has a surface area of 2 square meters and radiates like a black
body at a temperature of 35◦C, calculate the rate at which it loses heat in surroundings that have
a temperature of 15◦C.

According to the Stefan-Boltzmann law, a body at temperature T of emitting area A radiates a
total power P given by

P = σAT 4 (32)

where σ is the Stefan-Boltzmann constant. How do we calculate the rate of heat loss? Heat is
just another form of energy, and if no work is being done on our system of the human plus its
surroundings, the change in heat Q is just the change in (internal) energy ∆U . The rate at which
energy changes is power. Thus, we need only balance the power lost by the human due to its
radiating at a temperature Th against the power gained by absorbing power from its surroundings
at a temperature Ts. Or, the net rate of energy loss, the net power, is just power in minus power



out. Given that the human both emits and absorbs power over the same area A,

Pnet = Ph − Ps = σAT 4
h − σAT 4

s = σA
(
T 4

h − T 4
s

)
(33)

With the numbers given and σ=5.67× 10−8 J/m2 s K4, we find Pnet≈240 W.

Appendix: Newton’s method in C

#include <s td i o . h>
#include <math . h>

double newton (double x_0 , double to l , int max_iters , int∗ i ters_p , int∗ converged_p ) ;
double f (double x ) ;
double f_prime (double x ) ;

int main ( ) {
double x_0 ; /∗ I n i t i a l guess ∗/
double x ; /∗ Approximate s o l u t i o n ∗/
double t o l ; /∗ Maximum error ∗/
int max_iters ; /∗ Maximum number o f i t e r a t i o n s ∗/
int i t e r s ; /∗ Actual number o f i t e r a t i o n s ∗/
int converged ; /∗ Whether i t e r a t i o n converged ∗/

p r i n t f ( " Enter  x_0 ,  to l ,  and max_iters \n " ) ;
s can f ( "%l f  %l f  %d" , &x_0 , &to l , &max_iters ) ;

x = newton (x_0 , to l , max_iters , &i t e r s , &converged ) ;

i f ( converged ) {
p r i n t f ( "Newton algor i thm converged  a f t e r  %d s t ep s . \ n " ,

i t e r s ) ;
p r i n t f ( "The approximate  s o l u t i o n  i s  %19.16 e\n" , x ) ;
p r i n t f ( " f (%19.16 e )  = %19.16 e\n" , x , f ( x ) ) ;

} else {
p r i n t f ( "Newton algor i thm didn ’ t  converge  a f t e r  %d s t ep s . \ n " ,

i t e r s ) ;
p r i n t f ( "The f i n a l  e s t imate  was %19.16 e\n" , x ) ;
p r i n t f ( " f (%19.16 e )  = %19.16 e\n" , x , f ( x ) ) ;

}

return 0 ;
} /∗ main ∗/

double newton (double x_0 , double to l , int max_iters ,
int∗ i ters_p , int∗ converged_p ) {

double x = x_0 ;
double x_prev ;
int i t e r = 0 ;

do {



i t e r++;
x_prev = x ;
x = x_prev − f ( x_prev )/ f_prime ( x_prev ) ;

} while ( f abs (x − x_prev ) > t o l && i t e r < max_iters ) ;

i f ( f abs (x − x_prev ) <= t o l )
∗converged_p = 1 ;

else
∗converged_p = 0 ;

∗ i t e r s_p = i t e r ;

return x ;
} /∗ newton a lgor i thm ∗/

double f (double x ) {
return x∗exp (x )/ ( exp (x)−1.0)−5;

} /∗ f ∗/

double f_prime (double x ) {
return ( exp (2 . 0∗ x)−(x+1.0)∗ exp (x ) )/pow( exp (x ) −1 . 0 , 2 . 0 ) ; // the d e r i v a t i v e

} /∗ f_prime ∗/

Appendix: Evaluating
∫∞

0 x3 dx/ (ex − 1)

Pathologically, the best way to calculate the integral

∞∫
0

x3

ex − 1
dx (34)

is to calculate a more general case and reduce it to the answer we require. Take the following
integral

∞∫
0

xn

ex − 1
dx =

∞∫
0

xne−x

1− e−x
dx (35)

The denominator is always less than one, and is in fact the sum of a geometric series with common
multiplier e−x:

1
1− e−x

=
∞∑

k=0

e−kx (36)



If we substitute in this series, our integral becomes

∞∫
0

xne−x
∞∑

k=0

e−kx dx (37)

We can bring the factor e−x inside our summation, which only shifts the lower limit of the sum
from 0 to 1, leaving:

∞∫
0

xn
∞∑

k=1

e−kx dx (38)

Now make a change of variables u=kx, meaning

xn =
un

kn
(39)

dx =
du

k
(40)

With this change of variables, our integral is:

∞∫
0

un

kn

∞∑
k=1

eu du

k
=

∞∫
0

un
∞∑

k=1

eu du

kn+1
(41)

Each term in the sum represents an integral over u, all of which are convergent. This means we
can interchange the order of summation and integration:

∞∑
k=1

1
k + 1

∞∫
0

une−u du (42)

The integral on the right side is the definition of the Gamma function Γ(n+1), while the summation
is then the definition of the Riemann zeta function ζ(n + 1). Thus,

∞∫
0

xn

ex − 1
dx = ζ(n + 1)Γ(n + 1) (43)

With n=3,



ζ(n + 1) = ζ(4) =
∞∑

n=1

1
n4

=
π4

90
(44)

Γ(n + 1) = n! = 3! = 6 (45)

And finally,

∞∫
0

xn

ex − 1
dx = ζ(n + 1)Γ(n + 1) =

π4

15
(46)


