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Problem Set 3: Solutions

1. The energy required to break one O=O bond in ozone (O3, O=O=O) is about 500 kJ/mol.
What is the maximum wavelength of the photon that has enough energy to photo-dissociate ozone
by breaking one of the O=O bonds?

O3
hf−→ O + O2

Note Avagadro’s number is NA =6.02× 1023 things/mol.

If we are to break the double oxygen bond in ozone, we need to supply a photon with an energy
greater or equal to the bond energy. Two adjacent oxygens are ultimately bonded together because
they gain ∆E = 500 kJ/mol worth of energy between them to stay that way - if we want to coax
them apart and break the bond, we need to supply that much energy with an incident photon. If
we can convert 500 kJ/mol to an energy per bond in, say, electron volts, we can find out what sort
of photon has enough energy to break the bond. To do this, we must create an unholy alliance of
chemistry and physics units:

∆E = 500× 103 J
mol ·

1 mol
6.02× 1023 bonds

= 8.30× 10−19 J
bond ·

1 eV
1.60× 10−19 J

= 5.18
eV

bond

Now we are getting somewhere! It takes just over 5 electron volts per bond to break an oxygen
double bond in an ozone molecule. An incident photon with at least this much energy can be
absorbed by one of the oxygen atoms, which will then have enough energy to leave its bound state
and break the bond. Thus, to break a single bond:

Ephoton =
hc

λ
= 5.18 eV

=⇒ λ =
hc

5.18 eV

=
1.24× 10−6 eV ·m

5.18 eV
= 2.39× 10−7 m = 239 nm



Here we used our handy relationship from the last problem - hc = 1.24 × 10−6 eV · m. A photon
of wavelength 239 nm or lower will break up an ozone molecule, which is well into the ultraviolet
(UV). This is one way the ozone layer protects us - it absorbs harmful UV radiation and prevents
it from reaching the earth’s surface.

2. Park 1.2 Show that it is impossible for a photon striking a free electron to be absorbed and not
scattered.

All we really need to do is conserve energy and momentum for photon absorption by a stationary,
free electron and show that something impossible is implied. Before the collision, we have a pho-
ton of energy hf and momentum h/λ and an electron with rest energy mc2. Afterward, we have
an electron of energy (γ − 1)+mc2 =

√
p2c2 + m2c4 (i.e., the afterward the electron has acquired

kinetic energy, but retains its rest energy) and momentum pe = γmv. Momentum conservation
dictates that the absorbed photon’s entire momentum be transferred to the electron, which means
it must continue along the same line that the incident photon traveled. This makes the problem
one dimensional, which is nice.

Enforcing conservation of energy and momentum, we have:

(initial) = (final) (1)

hf + mc2 =
√

p2c2 + m2c4 energy conservation variant 1 (2)

hf + mc2 = (γ − 1) mc2 energy conservation variant 2 (3)
h

λ
= pe = γmv momentum conservation (4)

From this point on, we can approach the problem in two ways, using either expression for the
electron’s energy. We’ll do both, just to give you the idea. First, we use conservation of momentum
to put the electron momentum in terms of the photon frequency:

h

λ
= pe =⇒ hc

λ
= hf = pec (5)

Now substitute that in the first energy conservation equation to eliminate pe, square both sides,
and collect terms:

(
hf + mc2

)2 =
(√

p2c2 + m2c4
)2

=
(√

h2f2 + m2c4
)2

(6)

h2f2 + 2hfmc2 + m2c4 = h2f2 + m2c4 (7)

2hfmc2 = 0 =⇒ f = 0 =⇒ pe = v = 0 (8)

Thus, we conclude that the only way a photon can be absorbed by the stationary electron is if its



frequency is zero, i.e., if there is no photon to begin with! Clearly, this is silly.

We can also use the second variant of the conservation of energy equation along with momentum
conservation to come to an equally ridiculous conclusion:

hf =
hc

λ
= (γ − 1) mc2 energy conservation variant 2 (9)

h

λ
= γmv or hc

λ
= γmvc momentum conservation (10)

=⇒ γmvc = (γ − 1) mc2 (11)

(γ − 1) c = γv (12)
γ − 1

γ
=

v

c
=

√
1− 1

γ2
(definition of γ) (13)(

γ − 1
γ

)2

= 1− 1
γ2

(14)

γ2 − 2γ + 1 = γ2 − 1 (15)

γ = 1 =⇒ v = 0 (16)

Again, we find an electron recoil velocity of zero, implying zero incident photon frequency, which
means there is no photon in the first place! Conclusion: stationary electrons cannot absorb photons,
but they can Compton scatter them.

3. Park 1.3 What is the expected recoil velocity of a sodium atom which at rest emits a quantum
of its λ=589.0 nm radiation?

We need only conservation of momentum. Initially, the sodium atom of mass m is at rest. After
the photon emission, the photon carries away momentum p=h/λ, and conservation of momentum
dictates that the sodium atom have equal and opposite momentum −p=γmv:

0 = γmv − h

λ
(17)

γv =
v√

1− v2/c2
=

h

mλ
(18)

h2

m2λ2
=

v2

1− v2/c2
(19)

v2 =
(

h2

m2λ2

) (
1− v2

c2

)
(20)

v = ±
(

h

mλ

) (
1 +

h2

m2c2λ2

)−1/2

(21)

The atomic mass of sodium is m = 22.99 u = 3.82 × 10−26 kg, leading to |v| ≈ 0.03 m/s. With this



small velocity, we really did not require relativity. Using p≈mv for the sodium atom’s momentum,
we find

v ≈ h

mλ
(22)

which is consistent with a Taylor expansion of our relativistic result for v�c. Incidentally, another
way to determine if relativity is really required is to compare the rest energy of the sodium atom
and photon. If the latter is relatively small, relativity is not required.

hf

mc2
� 1 =⇒ h

λ
= pphoton � mc (23)

If the photon has a negligible fraction of the atom’s rest energy, or equivalently its momentum is
small compared to mc, the relativistic correction is negligible.

Another thing to think about: if the photon carries away energy, the sodium atom has also effec-
tively lost a mass ∆m=hf/c2 owing to mass-energy equivalence. This mass is negligibly small in
most cases, but we will come back to this point when we consider nuclear reactions.

4. Ohanian 37.48 Suppose that a photon is “Compton scattered” from a proton instead of an
electron. What is the maximum wavelength shift in this case?

The only difference from “normal” Compton scattering is that the proton is heavier. We simply
replace the electron mass in the Compton wavelength shift equation with the proton mass, and
note that the maximum shift is at θ=π:

∆λmax =
h

mpc
≈ 2.64× 10−15 m = 2.64 fm (24)

Fantastically small. This is roughly the size attributed to a small atomic nucleus, since the Compton
wavelength sets the scale above which the nucleus can be localized in a particle-like sense.

5. The Compton shift in wavelength ∆λ is independent of the incident photon energy Ei = hfi.
However, the Compton shift in energy, ∆E = Ef −Ei is strongly dependent on Ei. Find the
expression for ∆E. Compute the fractional shift in energy for a 10 keV photon and a 10 MeV
photon, assuming a scattering angle of 90◦.

The energy shift is easily found from the Compton formula with the substitution λ=hc/E:



λf − λi =
hc

Ef
− hc

Ei
=

h

mc
(1− cos θ) (25)

cEi − cEf

EiEf
=

1− cos θ

mc
(26)

∆E = Ef − Ei =
(

EiEf

mc2

)
(1− cos θ) (27)

∆E

Ei
=

(
Ef

mc2

)
(1− cos θ) (28)

Thus, the fractional energy shift is governed by the photon energy relative to the electron’s rest
mass, as we might expect. In principle, this is enough: one can plug in the numbers given for Ei and
θ, solve for Ef , and then calculate ∆E/Ei as requested. This is, however, inelegant. One should
really solve for the fractional energy change symbolically, being both more elegant and enlightening
in the end. Start by dividing both sides of the equation above by Ei to isolate Ef :

Ef

Ei
+ 1 =

Ef

mc2
(1− cos θ) (29)

1 = Ef

[
1
Ei

+
1

mc2
(1− cos θ)

]
(30)

Ef =
1

1/Ei + (1− cos θ) /mc2
=

mc2Ei

mc2 + Ei (1− cos θ)
(31)

Now plug that in to the expression for ∆E we arrived at earlier:

∆E

Ei
=

(
1

mc2

) (
mc2Ei

mc2 + Ei (1− cos θ)

)
(1− cos θ) (32)

∆E

Ei
=

Ei (1− cos θ)
mc2 + Ei (1− cos θ)

=

Ei

mc2
(1− cos θ)

1 +
Ei

mc2
(1− cos θ)

(33)

This is even more clear (hopefully): Compton scattering is strongly energy-dependent, and the
relevant energy scale is set by the ratio of the incident photon energy to the rest energy of the
electron, Ei/mc2. If this ratio is large, the fractional shift in energy is large, and if this ratio is
small, the fractional shift in energy becomes negligible. Only when the incident photon energy is an
appreciable fraction of the electron’s rest energy is Compton scattering significant. The numerical
values required can be found most easily by noting that the electron’s rest energy is mc2 =511 keV,
which means we don’t need to convert the photon energy to joules. One should find:



∆E

Ei
≈ 0.02 10 keV incident photon, θ=90◦ (34)

∆E

Ei
≈ 0.95 10 MeV incident photon, θ=90◦ (35)

Consistent with our symbolic solution, for the 10 keV photon the energy shift is negligible, while
for the 10 MeV photon it is extremely large. Conversely, this means that the electron acquires a
much more significant kinetic energy after scattering from a 10 MeV photon compared to a 10 keV
photon.

6. Show that the relation between the directions of motion of the scattered photon and the recoiling
electron in Compton scattering is

1
tan (θ/2)

=
(

1 +
hfi

mec2

)
tanϕ (36)

Let the electron’s recoil angle be ϕ and the scattered (exiting) photon’s angle be θ. Conservation
of momentum gets us started. The initial photon momentum is h/λi, the final photon momentum
is h/λf , and the electron’s momentum we will simply denote pe.

pe sinϕ = pf sin θ (37)

pe cos ϕ + pf cos θ = pi (38)

We can rearrange the second equation to isolate pe cos ϕ:

pe cos ϕ = pi − pf cos θ (39)

Now we can divide Eq. 37 by Eq. 39 to come up with an expression for tanϕ:

tanϕ =
pf sin θ

pi − pf cos θ
=

sin θ

pi/pf − cos θ
(40)

We now need a substitution for pi/pf to eliminate pf . For this, we can use the Compton equation,
which we can rearrange to yield λf/λi =pi/pf in terms of λi alone, noting p=h/λ.

λf − λi =
h

mc
(1− cos θ) (41)

λf

λi
=

pi

pf
= 1 +

h

mcλi
(1− cos θ) = 1 +

hfi

mc2
(1− cos θ) (42)



For the last line, we used the relationship λf =c. Substituting this in Eq. 40, we eliminate pi and
pf in favor of fi alone, which we need in our final expression.

tanϕ =
sin θ

pi/pf − cos θ
=

sin θ

1 +
hfi

mc2
(1− cos θ)− cos θ

=
sin θ(

1 +
hfi

mc2

)
(1− cos θ)

(43)

With the aid of a rather obscure trigonometric identity, we can obtain the desired result. Specifi-
cally:

1− cos θ

sin θ
= tan

(
θ

2

)
(44)

Using this in Eq. 43,(
1 +

hfi

mc2

)
tanϕ =

1
tan (θ/2)

(45)

If we define a dimensionless energy/momentum αi = hfi

mc2
= h

mcλi
= pi

mc the result is somewhat simpler,
as is the Compton equation:

(1 + αi) tan ϕ =
1

tan (θ/2)
(46)

αi

αf
= 1 + αi (1− cos θ) (Compton) (47)

This simplification has utility, because it will allow us to derive the electron energy in a more
compact fashion for the last question (see below).

7. French & Taylor 1.8 A radio station broadcasts at a frequency of 1 MHz with a total radiated
power of 5 kW. (a) What is the wavelength of this radiation? (b) What is the energy (in electron
volts) of the individual quanta that compose the radiation? How many photons are emitted per
second? Per cycle of oscillation? (c) A certain radio receiver must have 2 µW of radiation power
incident on its antenna in order to provide an intelligible reception. How many 1 MHz photons
does this require per second? Per cycle of oscillation? (d) Do your answers for parts (b) and (c)
indicate that the granularity of electromagnetic radiation can be neglected in these circumstances?

(a) Radio waves are just light, so knowledge of the frequency gives us the wavelength:

λ =
c

f
= 300 m (48)



(b) The energy of an individual photon is just hf =4.1 × 10−9 eV =6.63 × 10−28 J. The station’s
power (P ) is the energy (∆E) per unit time (∆t) emitted, and must just be the energy per photon
times the number of photons per unit time. If we call the number of photons per unit time ∆N/∆t,

P =
∆E

∆t
= hf

∆N

∆t
=⇒ ∆N

∆t
=

P

hf
≈ 7.5× 1030 photons/s (49)

There are 106 periods of oscillation per second, so that means that there are approximately
7.5× 1024 photons/period being emitted.

(c) This is precisely the same as the previous question, except the relevant power is 2 µW instead
of 5000 W.

∆N

∆t
=

P

hf
≈ 3.0× 1021 photons/s (50)

Again, there are 106 periods of oscillation per second, so there are approximately 3.0×1015 photons/period
being emitted.

This is certainly enough photons that the granularity of electromagnetic radiation is utterly negli-
gible for everyday power levels such as these.

What would the power level have to be for 1 MHz photons to have a noticeable granularity? Roughly
speaking, the sampling theorem says that if a function x(t) contains no frequencies higher than B,
it is completely determined by sampling at a rate of 1/2B.i. We could say then that the granularity
in a signal would be noticeable in this case if the photons were coming at less than 2 per cycle of
oscillation. That means

∆N

∆t
=

P

hf
≈ 2 photons/period = 2× 106 photons/sec (51)

With the given photon frequency of 1 MHz, we find P ∼10−21 W, a negligible amount of power. For
photons of visible light, in the 1015 Hz range, the power is ∼10−12 W, which is close to the limit of
human vision. With dark-adapted scotopic vision, we detect about 8× 10−11 W/m2 of green light
(550 nm), which means down to around ∼102−103 photons/s for an average-sized eye. Just about
enough to notice the granularity, but not quite.ii

ihttp://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
iiActually, it is more complicated than this. The sensors in the eye are capable of detecting single photons, but our

neural hardware filters the incoming signals to smooth out this granularity. If it didn’t, we would be too distracted
by the granularity in low light. See http://math.ucr.edu/home/baez/physics/Quantum/see_a_photon.html for a
nice discussion.

http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
http://math.ucr.edu/home/baez/physics/Quantum/see_a_photon.html


8. French & Taylor 1.11 The clean surface of sodium metal (in vacuum) is illuminated with
monochromatic light of various wavelengths and the retarding potentials required to stop the most
energetic photoelectrons are observed as follows:

Wavelength (nm) 253.6 283.0 303.9 330.2 366.3 435.8
Stopping potential (V) 2.60 2.11 1.81 1.47 1.10 0.57

Plot these data in such a way as to show that they lie (approximately) on a straight line as predicted
by the photoelectric equation, and obtain a value for h and the work function of sodium in electron
volts.

The plot we require is one of stopping potential versus frequency. The slope then yields h/e, and
the y intercept the work function.
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Figure 1: Stopping potential versus incident photon frequency for sodium metal. Linear regression gives h/e=(4.13± 0.02)×
1015 eV · s and ϕ=2.27± 0.02 eV with a correlation coefficient R2 =0.999.

9. Ohanian 37.51 What is the maximum energy that a free electron (initially stationary) can
acquire in a collision with a photon of energy 4 keV?

We can exploit our results from problem 6 to come up with a relatively simple expression for
the electron energy. The Compton equation, expressed in terms of the dimensionless energies
αi =hfi/mc2 and αf =hff/mc2, becomes:

αi

αf
= 1 + αi (1− cos θ) (52)



Conservation of energy dictates that the electron energy Ee must simply be the difference between
incident and exiting photon energies:

Ee = Ei − Ef =
hc

λi
− hc

λf
= αimc2 − αfmc2 = αimc2

(
1−

αf

αi

)
(53)

Ee = αimc2

(
1− 1

1 + αi (1− cos θ)

)
= αimc2

[
1 + αi (1− cos θ)− 1

1 + αi (1− cos θ)

]
(54)

Ee = mc2

[
α2

i (1− cos θ)
1 + αi (1− cos θ)

]
= hfi

[
αi (1− cos θ)

1 + αi (1− cos θ)

]
(55)

With sufficient interest, one can go on to show two other interesting relationships:

Ee = mc2

[
2α2

i

1 + 2αi + (1 + αi)
2 tan2 ϕ

]
(56)

cos θ = 1− 2
(1 + αi)

2 tan2 ϕ + 1
(57)

However, we have no need of these relationships at the moment . . . all we really need to do is
maximize Ee with respect to θ. One could simply assert the maximum is clearly when cos θ=−1,
i.e., θ=π, but this is unsatisfying and perhaps a touch arrogant. We can set dE/dθ=0 to be sure:

dE

dθ
= α2

i mc2

[
−αi sin θ

(1 + αi (1− cos θ))2
+

sin θ

1 + αi (1− cos θ)
+

αi sin θ cos θ

(1 + αi (1− cos θ))2

]
= 0 (58)

0 = sin θ [−αi + 1 + αi (1− cos θ) + αi cos θ] (59)

0 = sin θ (60)

θ = {0, π} (61)

The solution θ =0 can be discarded, since this corresponds to the photon going right through the
electron, an unphysical result. One should also perform the second derivative test to ensure we
have found a maximum, but it is tedious and can be verified by a quick plot of E(θ). At θ=π, the
maximum energy of the electron thus takes a nicely simple form:

Emax = hf

(
2αi

1 + 2αi

)
≈ 62 eV (62)

For the numerical answer, we noted that αi =hfi/mc2 =(4 keV) / (511 keV)≈7.8× 10−3.


