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Problem Set 4 Solutions

1. Group velocity of a wave. For a free relativistic quantum particle moving with speed v, the total
energy is E =hf =~ω=

√
p2c2 + m2c4 and the momentum is p=h/λ=~k=γmv. For the quantum

wave representing the particle, the group speed is vg = dω/dk. Prove that the group speed of the
wave is the same as the speed of the particle.

We can just brute-force this one. Using the energy equation, we can write ω in terms of k:
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In the last line, we substituted back in p=~k. If we use p=γmv, we can reduce this expression to
the desired result:
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∴ |vg| = |v| (6)

2. Uncertainty in everyday processes. A woman on a ladder drops small pellets toward a point
target on the floor. (a) Show that, according to the uncertainty principle, the average miss distance
must be at least
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where H is the initial height of each pellet above the floor and m is the mass of each pellet. Assume
that the spread in impact points is given by ∆xf =∆xi+(∆vx) t. (b) If H =2.00 m and m=0.500 g,
what is ∆xf?

Owing to the quantum nature of matter, the initial position of the pellet xi will have some uncer-
tainty ∆xi. From the uncertainty principle, this implies there must also be an uncertainty in the
initial momentum in the x direction ∆pix, and therefore the initial x component of the velocity as
well, ∆vix. This random initial velocity will really have both a horizontal component ∆vix and a
vertical component ∆viy. However, since the particle will quickly acquire a sizable vertical speed,
the vertical uncertainty will be negligible, and it will not affect the horizontal position at which the
particle lands. Thus, we need only consider the initial random horizontal speed ∆vix which will
lead to a scatter in the horizontal position of the particle.

Classically, the particle has a purely vertical velocity, so the total velocity in the horizontal direction
is only that which comes from uncertainty. After a time t, this will cause the particle to have moved
horizontally by ∆vixt compared to its expected position. Adding this to the initial uncertainty in
position, after a time t our total uncertainty is

∆x(t) = ∆xi + ∆vixt (8)

If the particle starts from rest at height H, the time to reach the ground is just t=
√

2H/g. Thus,
the final uncertainty in the horizontal position at which the particle hits the ground is
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From the uncertainty principle, we may relate the minimum uncertainty in initial velocity to the
minimal uncertainty in initial position:
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Using this in our expression for the final spread in horizontal position,
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We can find the minimum spread in ∆xf by minimizing with respect to ∆xi, and this will tell
us the degree of uncertainty in the final position required by the uncertainty principle – it can be



more, but this will give us the minimal value.
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Plugging this in to our previous expression and simplifying,
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≈ 5× 10−16 m (13)

3. Significance of the Compton wavelength. Show that the speed of a particle having de Broglie
wavelength λ and a Compton wavelength λc =h/mc is
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There are many ways to go about this one. Here is a short one. Since λc = h
mc , then λcc= h

m . The
de Broglie wavelength is thus
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Squaring both sides and simplifying,
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4. Zero point energy of a harmonic oscillator. The frequency f of a harmonic oscillator of mass
m and elasticity constant k is given by the equation
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The energy of the oscillator is given by
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where p is the system’s linear momentum and x is the displacement from its equilibrium position.
Use the uncertainty principle, ∆x∆p≈~/2, to express the oscillator’s energy E in terms of x and
show, by taking the derivative of this function and setting dE/dx=0, that the minimum energy of
the oscillator (its ground state energy) is Emin =hf/2.

The minimum uncertainty in momentum ∆p, given an uncertainty ∆x in position is given by the
uncertainty principle:
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The minimum uncertainty is also then the minimum average value we can expect either variable
to take on: pmin =∆p≡ p, xmin =∆x≡x . The energy equation may the be rewritten in terms of
the minimal x and p:
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In the last line, we used ω=
√

k/m, so k=mω2. Minimizing the energy with respect to x,
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Plugging this back in to the energy equation, we have the minimum energy:
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5. Deduction of atomic energy levels. The following lines appear in the emission spectrum of an
element:

λ1=122 nm λ2=102.5 nm λ3=97 nm λ4=95 nm λ5=656 nm
λ6=486 nm λ7=434 nm λ8=1880 nm λ9=1280 nm λ10=4050 nm

(a) Does the spectrum exhibit the Ritz combination rule?
(b) Calculate the energy of the photons associated with each spectral line.
(c) Sketch an energy level diagram that is consistent with the element’s spectral lines.



In fact, the wavelengths correspond to the hydrogen spectrum. Armed with that knowledge, the
problem is much simpler. Each given wavelength corresponds to the energy difference between two
levels of the hydrogen atom (say, n = 3 and n = 1). Besides the direct transition from level 3 to
level 1, the electron could also go from 3 to 2 and then 2 to 1, meaning there must be two other
photon energies that sum to that of the first photon: E3→1 =E3→2+E2→1. Using the energy level
diagram belowi, it is a simple matter to write down all possible energy level transitions and their
energies, and match them to the list.

Figure 1: In the Bohr model of the hydrogen atom, the emission lines correspond to an electron jump from a higher energy
level n to a lower n′ with the emission of a photon corresponding to the energy difference between the two levels. For the visible
Balmer series, n′ =2 and n runs from 3 upward. From http://hyperphysics.phy-astr.gsu.edu/ .

The table below lists the energies corresponding to the given wavelengths, their identification, and
their decomposition into sums of other given energies. If no decomposition is listed, it means that
this wavelength corresponds to the first in a series, and cannot be decomposed into smaller indi-
vidual transitions.

If you did’t realize the given wavelengths were from the hydrogen spectra, one could also brute-force
iFrom http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html.

http://hyperphysics.phy-astr.gsu.edu/
http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html


level λ (nm) f (PHz) E (eV) transition Decompositions

E0 95 3.158 13.053 Lyman 5→1 E1 + E9; E2 + E7; E3 + E4

E2+E8+E9; E3 + E5 + E9; E3+E6+E7

E3+E6+E8+E9

E1 97 3.093 12.784 Lyman 4→1 E8+E6+E3; E5+E3; E8+E2

E2 102.5 2.927 12.098 Lyman 3→1 E6+E3

E3 122 2.459 10.164 Lyman 2→1 –
E4 434 0.691 2.857 Balmer 5→2 E9+E8+E6; E9+E5; E7+E6

E5 486 0.617 2.551 Balmer 4→2 E8+E6

E6 656 0.457 1.890 Balmer 3→2 –
E7 1280 0.234 0.969 Paschen 5→3 E9+E8

E8 1880 0.160 0.660 Paschen 4→3 –
E9 4050 0.074 0.306 Brackett 5→4 –

the problem. I wrote a small C program to search for combinations of the energies corresponding
to the given wavelengths. Here are the results, which match the predictions of the Bohr model
nicely. I ordered the wavelengths given from lowest to highest, meaning the corresponding energies
E0 to E9 are ordered from highest to lowest. The brute-force search was carried only as far as four
terms.

E0 = 13.1 E1 + E9 = 13.1

E0 = 13.1 E2 + E7 = 13.1

E0 = 13.1 E3 + E4 = 13.0

E1 = 12.8 E2 + E8 = 12.8

E1 = 12.8 E3 + E5 = 12.7

E2 = 12.1 E3 + E6 = 12.1

E4 = 2.86 E5 + E9 = 2.86

E4 = 2.86 E6 + E7 = 2.86

E5 = 2.55 E6 + E8 = 2.55

E7 = 0.969 E8 + E9 = 0.966

E0 = 13.1 E2 + E8 + E9 = 13.1

E0 = 13.1 E3 + E5 + E9 = 13.0

E0 = 13.1 E3 + E6 + E7 = 13.0

E1 = 12.8 E3 + E6 + E8 = 12.7

E4 = 2.86 E6 + E8 + E9 = 2.86

E0 = 12.8 E3 + E6 + E8 + E9 = 13.0



Thus, the Ritz combination rule is obeyed, even if one didn’t realize the spectrum was for hydrogen.

6. Macroscopic quantum matter. Under usual conditions of temperature and density, the behavior
of a gas can be interpreted in terms of classical physics, for example, by Maxwell’s kinetic theory
(treating the gas as a collection of point particles). However, when the de Broglie wavelength of
the atoms is of the order of the mean distance d between them, the classical approach fails. (a)
Show that the classical approach fails when
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(b) Assuming that the mean distance between the atoms is 1 nm, at what temperature will quantum
effects begin to appear in the gas helium?

The average speed of a particle in an ideal gas is
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which lets us write the average de Broglie wavelength as
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The classical approach is expected to fail when the spacing between atoms approaches the de Broglie
wavelength, or

d ≈ h√
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∼ h√
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(29)

At room temperature, this is about 0.07 nm; at 4.2 K (the boiling point of helium), it is about
0.6 nm. This already hints that quantum effects should arise in helium near its boiling point, and
certainly in the liquid. If we assume a mean spacing of 1 nm for the helium atoms, the temperature
at which the classical approach breaks down is

T =
h2

3k〈λ〉2m
≈ 2 K (30)

7. How big are atoms? A simple but sophisticated argument holds that the hydrogen atom has
its observed size because this size minimizes the total energy of the system. The argument rests
on the assumption that the lowest-energy state corresponds to a physical size comparable to a de
Broglie wavelength of the electron. Larger size means larger de Broglie wavelength, hence smaller



momentum and kinetic energy. In contrast smaller size means lower potential energy, since the
potential well is deepest near the proton. The observed size is a compromise between kinetic and
potential energies that minimizes the total energy of the system. Develop the argument explicitly,
for example as follows:

(a) Write down the classical expression for the total energy of the hydrogen atom with an electron
of momentum p in a circular orbit of radius r. Keep kinetic and potential energies separate.

(b) Failure of classical energy minimization. Use the force law to obtain the total energy as a
function of radius. What radius corresponds to the lowest possible energy?

(c) For the lowest-energy state, demand that the orbit circumference be one de Broglie wave-
length. Obtain an expression for the total energy as a function of radius. Note how a larger
radius decreases the kinetic and increases the potential energy, whereas a smaller radius
increases the kinetic and decreases the potential energy.

(d) Take the derivative of the energy versus radius function and find the radius that minimizes
the total energy. How large is that radius for a hydrogen atom? For a He+ ion with one
electron?

The total energy of the classical system is:
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Using the force equation, we can express the kinetic energy in terms of radius, noting that the
electric force must provide the centripetal force:
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The total energy is half the potential energy, as it must be for a stable bound obit in a 1/r2 central
force. By inspection, we can see that the minimum energy is when r→0, corresponding E→−∞,
i.e., the electron crashes into the proton. Bad!

If we demand that the circumference of the orbit, 2πr, equal the de Broglie wavelength,
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Substituting this into the energy equation,
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Minimizing this with respect to r,
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For hydrogen, we find r≈ 5 × 10−11 m. For He+, we have two protons in the nucleus (charge 2e),
and the electrical potential energy is modified to −2kee

2/r. This gives r≈2.6× 10−11 m.

8. (a) Early neutron model. The neutron is an electrically neutral particle with a mass approx-
imately equal to the proton mass. An early model considered the neutron to be an object where
the electron is confined inside the proton. Assuming that the proton radius is r≈10−15 m, estimate
the electron’s kinetic energy due to Heisenberg uncertainty, and compare it to the neutron rest mass.

(b) Energy spread of electron beam. A monochromatic beam of electrons of energy E = 1 keV
is incident on a shutter that opens for ∆t = 1 ns. What is the fractional energy spread ∆v/v

of the electron velocity v after the shutter? (Decide first whether to perform a relativistic or a
non-relativistic calculation.)

(a) Confinement on a scale r means that the uncertainty in position is ∆x≈ r, and uncertainty
dictates

∆p∆x ≈ r∆p ≈ ~ =⇒ ∆p ≈ ~
r

(39)

The energy of the electron is E2 = m2c4 + p2c2. The uncertainty in energy comes only from the
second term, since the electron rest mass is fixed, and thus

∆E ≈ c∆p ≈ ~c

2r
≈ 0.1 GeV (40)

This is about 10% of the neutron’s rest mass, a sizable fraction.

(b) Since the energy scale is far less than the electron’s rest energy (E �mc2), we may neglect
relativistic effects. If the pulse is ∆t in length, it has a spatial extent of ∆x=v∆t. This implies an



uncertainty in momentum:
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The uncertainty in velocity can be related to the uncertainty in momentum:
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The kinetic energy of an electron in the beam is 1
2mv2, and thus we can relate the uncertainty in

velocity to the time uncertainty and the electron energy:
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