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Problem Set 6 & 7: Solutions

1. The energies of the stationary states of hydrogen slightly depend on the orbital angular mo-
mentum quantum number l. An improved formula for the energy of the state of quantum numbers
n and l for nonzero l is
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where the term ±1
2 corresponds to the spin parallel and antiparallel, respectively, to the orbital

angular momentum.

(a) For the case of the first excited state, n=2, l=1, and the spin antiparallel to the orbital angular
momentum, find the effective difference in electron volts between the energy calculated according
to Bohr theory and the energy calculated according to the improved formula above.
(b) For n= 2, l= 1, find the difference in electron volts between the energies of spin parallel and
antiparallel to the angular momentum calculated according to the improved formula above. Which
of these states has the lowest energy?

Note: There were two typos in this problem as stated. First, the overall energy should be
negative, and the minus sign was missing. Second, there is a spurious 1 in the denominator of the
expression above. Here is the correct expression:
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You will be granted full credit if you solve the problem as stated. However, I will proceed with the
corrected energies.

Recall the energy for a level n according to the Bohr model:

En,Bohr =
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=
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(3)



With this, we can simplify our expression for En,l above:
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If we make a substitution in favor of the fine structure constant, α=e2/4πεo hc, we could simplify
things inside the brackets even further.i We can also note that l ± 1

2 is just the total angular
momentum: l + 1

2 corresponds to the orbital angular momentum l being parallel to the electron’s
spin angular momentum (1

2), whereas l− 1
2 corresponds to the antiparallel situation. We can clean

things up a bit by calling the total angular momentum jii, i.e., j= l± 1
2 . This gives us:
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Thus, the overall energy for states of quantum number n and l can be written as a correction to the
Bohr model, whose size depends on the ground state energy in the Bohr model (E0,Bohr) relative to
the electron’s rest energy (mc2 =511 keV), or as the square of the fine structure constant. This is
essentially where the name “fine structure constant” comes from – it appears when one attempts to
introduce the small corrections of angular momentum and spin into the Bohr model of the hydrogen
atom, and correctly predicts the presence of a number of additional spectra lines. The size of the
correction is of order α2≈1/1372≈5× 10−5, about 50 parts per million.

In any case, the difference between En,l and En,Bohr is now readily found:
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The fractional difference depends only on the fine structure constant and the quantum numbers n
and l:
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For the particular case n=2, l=1, and antiparallel spin (thus taking j= l− 1
2 = 1

2), we have
iThis definition gives the Bohr ground state energy in terms of α as well: Eo,Bohr =− 1

2
mc2α2/n2.

iiThis is a common thing to do, and you will see it more often.



E2,1 − E2,Bohr =
Eo,Bohrα
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≈ −5.66× 10−5 eV (9)

(In the problem as stated, with the erroneous formula, you would have found −1.1×10−5 eV.) Since
the result is negative, it implies that the antiparallel state is actually lower in energy than the Bohr
ground state neglecting angular momentum.iii

We are also asked to find the energy difference between spin parallel and antiparallel to the angular
momentum. Parallel corresponds j= l+ 1

2 , and antiparallel j= l− 1
2 . Thus,
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For the particular case n=2, l=1,

En,l,↑↑ − En,l,↑↓ = −
α2Eo,Bohr

24
=

1
16
α2Eo,Bohr ≈ −4.5× 10−5 eV (12)

Again, since the difference is negative, and both energies are negative, it implies the antiparallel
state has a lower energy than the parallel state. You can see

http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydfin.html

For a brief discussion of this and the hydrogen-deuterium splitting.

2. The wave function for an electron in the 2p state of hydrogen is given by

ψ2p =
1

√
3 (2ao)3/2

r

ao
e−r/2ao (13)

where ao is the Bohr radius, a0 = 4πε0 h2

mee2 =0.529×10−10 m. What is the most likely distance from
the nucleus to find an electron in the 2p state? Express your answer in terms of ao.

The most likely distance corresponds to the distance at which the probability of finding the electron
is maximum. This is distinct from the expected value of the radius 〈r〉. The probability of finding an
electron at a distance r in the interval [r, r+dr], in spherical coordinates, is the squared magnitude

iiiKeep in mind that the energies are all negative when taking their differences . . .

http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydfin.html


of the wavefunction times the volume of a spherical shell of thickness dr and radius r:

P(r)dr = |ψ|2 · 4πr2 dr or P(r) = |ψ|2 · 4πr2 (14)

Given ψ2p above, we have
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The most probable radius is when P(r) takes a maximum value, which must occur when dP/dr=0
and d2P/dr2<0. Thus:

dP

dr
= 0 =

(
π

6a5
o

)
d

dr

(
r4e−r/ao

)
=

(
π

6a5
o

)(
4r3e−r/ao −

r4

ao
e−r/ao

)
(16)

0 =

(
πr3

6a5
o

e−r/ao

)(
4 −

r

ao

)
(17)

=⇒ r = {0, 4ao,∞} (18)

One can either apply the second derivative test or make a quick plot of P(r) to verify that r=4ao is
the sole maximum of the probability distribution, and hence the most probable radius, while r=0
and r=∞ are minima.

3. Repeat the previous problem for an electron in the 2s state, where
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Repeating our earlier procedure,
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The most probable radius occurs when
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At this point, we can already see the trivial solutions r= 0 and r= ∞, which just like last time



are uninteresting minima of the probability distribution. The interesting solutions are more easily
found if we make a variable substitution x=r/ao:

0 = 8 − 16x+ 8x2 − x3 (23)

One can factor this thing by synthetic division and find the roots to be {2, 3 ±
√

5}, but the roots
are more easily found on your average graphic calculator to be

x =
r

ao
=

{
0, 3±

√
5
}
≈ {0.764, 2.00, 5.24} (24)

Direct substitution, or a quick plot of P(r) verifies that r=0.764ao is a local maximum, r=2.00ao

is a local minimum (zero, actually), and r=5.24ao is the global maximum we seek.

4. In the quantum theory of diamagnetism, one can write the susceptibility in terms of the mean
square distance of electrons from the nucleus 〈r2〉:

χd =
Nµ

H
= −

µ0Ze
2n

6m
〈r2〉

where n is the number of atoms per unit volume, Z the atomic number, e and m are the electron
charge and mass. The wavefunction of the hydrogen atom in its ground state (1s) is

ψ0 =
1√
πa3

0

e−r/a0

where ao is the Bohr radius. Show that 〈r2〉 = 3a2
0, and calculate the diamagnetic susceptibil-

ity of atomic hydrogen. You may assume that the number of atoms per unit volume is given by
Loschmidt’s number, n0 =2.687×1025 m−3 (i.e., calculate χd at STP).

Hint: Remember that the volume element in spherical coordinates is dV = r2 sin θdrdθdϕ when
you try to find 〈r2〉. The following integral will be useful:∫∞

0
xne−ax =

n!
an+1

First, we must find 〈r2〉:



〈r2〉 =

∫
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Substituting this, n=n0, Z=1, and ao =5.29× 10−11 m in our formula for χd,

χd =
Nµ

H
= −

µ0Ze
2n

6m
〈r2〉 ≈ −1.33× 10−9 m3/mol

If we use Avogadro’s number for the number of atoms per mole rather than Loschmidt’s number,
we obtain χd≈3× 10−11 m3/mol

5. (a) Evaluate the expectation values of the position 〈x〉 for a particle in the ground state of the
one-dimensional simple harmonic oscillator, where:

ψ0 =

√
1

a
√
π
e−x2/2a2 (27)

(b) Evaluate the expectation value of the position 〈x〉 for a particle in the first excited state of the
one-dimensional simple harmonic oscillator. The wave function is:

ψ1 =

√
1

2a
√
π

(
2x
a

)
e−x2/2a2 (28)

where a=
√

 h
mωo

and ωo =
√
k/m.

(c) Evaluate 〈x2〉 for the ground state and first excited states of the simple harmonic oscillator in
one dimension. What is the expectation value of the potential energy of the particle in each state?
(d) Find the uncertainty in position, ∆x=

√
〈x2〉− 〈x〉2 for the ground state and first excited state.

The following integrals may be useful:
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∞∫
−∞

x3e−ax2
dx =

∞∫
−∞

xe−ax2
dx = 0 (30)

∞∫
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For the ground state, we have

〈x〉o =

∫
x|ψ0|

2 dx =
1

a
√
π

∫∞
−∞ xe−x2/a2

dx = 0 (32)

The integral vanishes by symmetry, since the integrand is an odd function of x (and, it was given
above).

Classically, a harmonic oscillator is something like a mass on a spring, which oscillates uniformly
about its equilibrium point at x=0. This means that its average position, over a full cycle of motion,
is just x=0. The quantum version is no different: if we made many repeated measurements of the
particle’s position, we would find the average position to be x= 0. The same will be true of the
first excited state:

〈x〉1 =
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x|ψ1|
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Evaluating 〈x2〉 proceeds similarly, except that the integrals will not vanish, since the integrands
will be even functions of x
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Here the factor of 2 comes from doubling the given integral, with limits of 0 and ∞, since the
desired integral is symmetric about x=0 with limits of −∞ and ∞. The expectation value of the
potential energy can then be found by noting U= 1

2kx
2, and thus
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As expected, the potential energy is one half the total ground state energy of Eo = 1
2
 hωo.

Since we need 〈x2〉 for the first excited state in the last part of the problem, we may as well repeat
the preceding calculation for the first excited state:

〈x2〉1 =

∫
x2|ψ1|

2 dx =
2
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√
π
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−∞ x4e−x2/a2
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√
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This yields 〈U〉1 = 3
4
 hω= 3

2Eo. Finally, we can find the uncertainty in position for both the ground
state and first excited state:

∆xo =
√
〈x2〉o − 〈x〉2o =

√
〈x2〉o =

a√
2

(37)

∆x1 =

√
〈x2〉1 − 〈x〉21 =

√
〈x2〉1 = a

√
3
2

(38)

6. Electromagnetic radiation of wavelength 20 nm is incident on atomic hydrogen. Assuming that
an electron in its ground state is ionized, what is the maximum velocity at which it may be emitted?

We need only analyze conservation of energy: the electron’s initial energy Eo plus the photon’s
energy must give the electron’s kinetic energy:

Eo +
hc

λ
= (γ− 1)mc2 (39)

γ =
1√

1 − v2/c2
=
Eo

mc2
+

h

mcλ
+ 1 (40)

1 −
v2

c2
=

1(
Eo

mc2 + h
mcλ + 1

)2 (41)

v

c
=

√√√√1 −
1(

Eo
mc2 + h

mcλ + 1
)2 (42)

Given Eo =−1
2mc

2α2 (where α≈1/137 is the fine structure constant and λc =h/mc≈0.00243 nm
is the Compton wavelength, we can simplify this somewhat:

v

c
=

√√√√1 −
1(

λc
λ − 1

2α
2 + 1

)2 ≈ 0.0138 (43)



The dominant contribution is from the photon’s initial energy (≈62 eV, compared to Eo≈−13.6 eV),
so one incurs only a small error in neglecting the electron’s binding energy in the ground state.

7. An excited argon ion in a gas discharge radiates a spectral line of wavelength 450 nm. The
transition from the excited to the ground state that produces this radiation takes an average time
of 10−8 s. What is the inherent width of the spectral line ∆λ/λ? Hint: uncertainty principle.

The energy-time uncertainty principle gives us

∆E∆t >
h

4π
=⇒ ∆E =

h

4π∆t
(44)

How do we get from energy uncertainty to wavelength uncertainty? What you cannot do is this:

∆E =
hc

∆λ
WRONG (45)

Rather, since ∆E is an uncertainty, we must use propagation of uncertainty to find ∆λ. First, we
can write the energy-wavelength relationship E=hc/λ in terms of differentials:

dE

dλ
=

−hc

λ2
(46)

dE = −
hc

λ2
dλ = −

Edλ

λ
(47)

dE

E
= −

dλ

λ
(48)

For smalliv but not infinitesimal differences, we may write |∆E/E|≈∆λ/λ. This is something you
will encounter in your laboratory classes if you have not already; if it is unfamiliar, see, for example,

http://en.wikipedia.org/wiki/Propagation_of_uncertainty

Particularly, the section on “Example formulas” is worth noting. In any event, we may use this
result to find the relative uncertainty in wavelength:

∆λ

λ
=

∣∣∣∣∆EE
∣∣∣∣ = h

4π∆t
λ

hc
=

λ

4πc∆t
≈ 1× 10−8 (49)

This gives an absolute uncertainty in wavelength of ∆λ≈5× 10−6 nm.

8. The typical operating voltage for an electron microscope is ∆V=50 kV. (a) What is the smallest
feature one could hope to resolve? (b) What is the equivalent resolution if neutrons are used? (c)
Explain in words why electrons are used, and not protons or neutrons.

ivWhere “small” means we still only need first-order terms in ∆λ and ∆E.

http://en.wikipedia.org/wiki/Propagation_of_uncertainty


The smallest feature one could hope to resolve would be of the order of the wavelength of the
electron, in analogy to microscopy with light waves. For massive objects, de Broglie first related
an objects wavelength λ to its momentum |~p|:

λ =
h

|~p|

where h is Planck’s constant as usual. If we can find the particle’s momentum, we can find its
wavelength, and hence estimate the microscope’s resolution. If the electron is accelerated by a
∆V = 50 kV electric potential, we know that it starts with a relative potential energy e∆V which
is wholly converted into kinetic energy. From the accelerating voltage, we can get kinetic energy,
from which we can get velocity, which gives us momentum and finally wavelength.

Somewhat shorter is to use an alternative formula for kinetic energy, which you can readily verify
is correct, and add conservation of energy as described above:

KE =
|~p|2

2m
= e∆V

Solving this equation for momentum ...

|~p|2 = 2me∆V

|~p| =
√

2me∆V

Now plugging that into the de Broglie relationship, and using the requisite constants and electron
mass:

λ =
h

|~p|
=

h√
2me∆V

=
6.63× 10−34 J · s√

2 · 9.11× 10−31 kg · 1.60× 10−19 C · 50.0× 103 V
= 5.49× 10−12

[
kg · m2

s2 · s
]

√
[kg · C ·V]

= 5.49× 10−12

[
kg ·m2

][
s
√

kg · C · (N/C) ·m
] = 5.49× 10−12

[
kg ·m2

][
s
√

kg · (kg ·m/s2) ·m
]

= 5.49× 10−12

[
kg ·m2

]
[s · kg ·m/s] = 5.49× 10−12 m = 5.49 pm

The units are a bit ugly here, which is why we worked them out explicitly for a change . . . for the
units to come out properly, it is easiest to remember that the entire bit under the radical above
must have units of momentum, or kg ·m/s (which avoids much of the manipulation above), or at



least to remember that 1 N/C = 1 V/m to do it the hard way. Anyway: this is a decent estimate
of the fundamental resolution of an electron microscope operating at 50 kV accelerating potential.
In reality, the resolution limit is a few orders larger most of the time – the electromagnetic lenses
aren’t perfect, and we have thermal motion to worry about besides.

What about if we use neutrons? The answer is far simpler in this case: since neutrons have no
charge, they can’t be accelerated by electric potentials like electrons. The microscope simply won’t
work like this, there is no resolution! Why not protons, though, since they can be accelerated
by potentials? Electrons, we found, are bound to their atomic nuclei with energies on the order
of a few or a dozen electron volts - they are easy enough to remove from atoms for acceleration
and focusing. Protons, being bound within the nucleus, are much, much harder to separate from
their constituent atoms - their binding energy is more like a million electron volts (MeV). We use
electrons because they are relatively easily isolated and pushed around.

9. The neutral hydrogen atom in its normal state behaves in some respects like an electric charge
distribution which consists of a point charge of magnitude e surrounded by a distribution of negative
charge whose density is given by

−ρ(r) = Ce−2r/ao

Here ao is the Bohr radius, 0.53 × 10−10 m, and C is a constant with the value required to make
the total amount of negative charge exactly e.

(a) What is the net electric charge inside a sphere of radius ao?
(b) What is the electric field strength at this distance from the nucleus?
(c) What is C?

Charge is charge density integrated through a volume, just as mass is density integrated through
volume:

q =

∫
ρdV (50)

If we want the charge contained in a radius ao from the origin, we simply perform the integral over
the interval r : 0 → ao and over the full range of θ and ϕ. Performing the integral over all space
(i.e., r : 0 → ∞) would give us the whole charge of an electron, which must be −e. We’ll use this
fact in part c.

The first question is: how to perform the volume integral? Our function is radially symmetric, and
this strongly suggests – no, insists – that we use spherical coordinates. Let’s try setting it up in



cartesian coordinates to see why. In cartesian coordinates, a volume element is dV=dxdydz, and
our radius is r=

√
x2 + y2 + z2. Thus,

q = −

∫
dx

∫
dy

∫
dz Ce− 2

ao

√
x2+y2+z2 (51)

where the limits of integration correspond to
√
x2 + y2 + z2 running from 0 to ao. This integral

puzzles even the Wolfram Integrator . . . which is not a good sign. In spherical coordinates, our
volume element is

dV = r2 sin θdrdθdϕ where


r : 0 → ao

θ : 0 → π

ϕ : 0 → 2π

(52)

where we have also indicated the appropriate ranges for the integration. What is nice about this?
First, there are no θ or φ terms in our function, so those integrals are trivial. Second, the integral
over r is tractable. Let’s grind through it:

q(ao) =

π∫
0

sin θdθ

2π∫
0

dϕ

ao∫
0

ρ(r)r2 dr (53)

note
π∫
0

sin θdθ = − cos θ

∣∣∣∣∣
π

0

= 2 and
2π∫
0

dϕ = ϕ

∣∣∣∣∣
2π

0

= 2π (54)

q(ao) = 4π

a0∫
0

ρ(r)r2 dr (55)

The last integral is doable. You can integrate by parts twice, starting with u=r and dv=e−2r/a0 .
Also, Wolfram is all over it. The result is

q(ao) = −4πC

a0∫
0

r2e−2r/ao dr = −4πC
[
−1
4
e−2r/ao

(
a3

o + 2ra2
o + 2aor

)]ao

0

(56)

q(ao) = πCa3
o

(
5
e2

− 1
)
≈ −0.32πCa3

o (57)

Note that here e is the base of the natural logarithm, not the electron charge!

What is the field at r=ao? If the charge distribution is spherically symmetric, we can apply Gauss’



law: it looks just like a point charge of magnitude q(ao). Thus,

~E =
kq

a2
o

r̂ = πkCao

(
5
e2

− 1
)

r̂ (58)

Finally, we need the normalization constant C. We can find this by noting that the charge distribu-
tion integrated over all space must give the net charge for one electron, viz., −e. Rather than per-
forming the integration over r : 0 → ao, we perform it over r : 0 → ∞ and note limr→∞ e−rrn =0.

qtot = −e = −4πC

∞∫
0

r2e−2r/ao dr = −4πC
[
−1
4
e−2r/ao

(
a3

o + 2ra2
o + 2aor

)]∞
0

(59)

−e = −4πC
(

−
1
4
a3

o

)
= πCa3

o (60)

=⇒ C =
e

πa3
o

(61)

Note that here e is the electron charge . . . and thus about 32% of the electron’s total charge is
contained within a radius ao in this model based on our earlier result.


