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Problem Set 8 Solutions
1. Multiplicity of atomic magnetic moments. Calculate the magnetic moments that are possible
for the n = 3 level of Hydrogen, making use of the quantization of angular momentum. You may
neglect the existence of spin. Compare this with the Bohr prediction for n=3.

The magnetic moment can be related to the total orbital angular momentum:
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In turn, we know how the magnitude of ~L depends on l:
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So in general the moments will be
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For n=3, we may have l= {0, 1, 2}, so this gives |~µ|=
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µB.

In the Bohr model, our general relationship between ~L and ~µ remains valid, but angular momentum
is not given by a separate quantum number (the Bohr model has only the principle quantum number
n), but simply by L=n h. Thus, the moment for a given n in the Bohr model is single-valued, and
given by

|~µBohr| = −µB
|~L|

 h
= −nµB (4)

The Bohr model is in sharp disagreement with the full quantum solution.

2. Transitions in a magnetic field. Transitions occur in an atom between l = 2 and l = 1 states
in a magnetic field of 0.6 T, obeying the selection rules ∆ml =0,±1. If the wavelength before the
field was turned on was 500.0 nm, determine the wavelengths that are observed. You may find the
following relationship from last week’s homework useful:

∣∣∆λ
∣∣ =

λ2∆E
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(5)



Recall that the Zeeman effect changes the energy of a single-electron atom in a magnetic field by

∆E = ml

(
e h

2me

)
B with ml = −l,−(l − 1), . . . , 0, . . . , l − 1, l (6)

For convenience, note that e h/2me =µB≈57.9µ eV/T, and neglect the existence of spin. See also:
Pfeffer & Nir 3.2.2

In a magnetic field B, the energy levels for a given l state will split according to their value of ml.
If the original energy of the level is El, then the original level will be split symmetrically into 2l+1
sub-levels, with adjacent levels shifted by µBB:

El,ml
= El + mlµBB (7)

This is shown schematically below for l=2 and l=1 levels. The l=2 level has possible ml values
of ml = {−2,−1, 0, 1, 2}, and thus in a magnetic field B what was a single level is now 5 individual
levels. For l=1, we have ml values of only ml = {−1, 0, 1}, and the original level becomes a triplet
upon applying a magnetic field.
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Figure 1: Allowed transitions from l=2 to l=1 with a magnetic field applied.

Before calculating anything, we can apply the dipole selection rules, which states that ml can
change by only 0,±1. This means that, for example, from the l= 2, ml = 1 level an electron may
“jump” to the any of the l = 1, ml = {2, 1, 0} levels. On the other hand, from l = 2, ml = 2 level
an electron may only jump to the l=1, ml =1 level. Following these rules, we see from the figure
above that there are only 9 possible transitions allowed. Further, noting that the levels are equally
spaced, we have in fact only three different transition energies.

The spacing between the levels ∆Eo is the Zeeman energy given above, ∆Eo = µBB. From our
schematic above, it is clear that the only possible transition energies in a magnetic field are the



original transition energy (no change in ml), or the original transition energy plus or minus ∆Eo

(ml changes by ±1). The original transition energy Eo is readily found from the given wavelength
λ=500 nm:

Eo =
hc

λ
≈ 2.5 eV (8)

Thus, the new transition energies must be

Eo 7−→ {Eo − ∆Eo,Eo,Eo + ∆Eo} = {Eo − µBB,Eo,Eo + µBB} (9)

That is, the original transition energy plus two new ones. We can easily convert these two new
energies into two new wavelengths by the energy-wavelength relationship E=hc/λ. However, this
does require some numerical precision (i.e., carrying at least 7-8 digits in your calculations, and
knowing the requisite constants to commensurate precision), and it is somewhat easier to simply
calculate the change in energy by itself. Since we know the energy changes by ±∆Eo, using the
formula given we have

∣∣∆λ
∣∣ =

λ2∆Eo

hc
=

λ2µBB

hc
≈ 0.007 nm (10)

The shift in energy of ∆Eo implies a shift in wavelength of ∆λ ≈ 0.007 nm, meaning the new
transitions must be at the original wavelength λ plus or minus ∆λ:

λ 7−→ {λ − ∆λ, λ, λ + ∆λ} = {499.994, 500.000, 500.007} nm (11)

3. Stern-Gerlach experiment. A beam of free electrons moves perpendicularly through a uniform
magnetic field of 0.8 T. What is the energy difference between the electrons whose spins are “aligned”
and “anti-aligned” with the magnetic field? See also: Pfeffer & Nir 3.4.1-2

The energy difference between the spins parallel and antiparallel to the magnetic field is due to
the spin magnetic moments interacting with the magnetic field. For a moment ~µ in a field B, the
energy is

E = −~µ · ~B (12)

For a free electron, we have no orbital angular momentum. The magnetic moment is only due to



the electrons’ spin.i Measured along a particular axis, the spin magnetic moment can only take on
two values, ±µB – that is, a moment of magnitude µB directed either parallel or antiparallel to the
magnetic field. For an electron spin parallel to the magnetic field, the energy is then E↑↑=−µBB,
while for antiparallel spins the energy is E↑↑=+µBB. Their difference is then

∆E = 2µBB ≈ 9.3× 10−5 eV (13)

4. Radio astronomy. The hydrogen λ= 21 cm line is used in radio astronomy to map the galaxy.
The line arises from the emission of a photon when the electron in a galactic hydrogen atom “flips”
its spin from being aligned to being anti-aligned with the spin of the proton in the hydrogen atom.ii

What is the magnetic field the electron experiences to induce this spin flip?

If the transition is due to a spin flip in the presence of a magnetic field B, then based on the results
of the previous problem we must expect that the electron gains or loses an energy ∆E=2µBB. This
difference in energy must correspond to the λ=21 cm emission, and thus

∆E = 2µBB =
hc

λ
=⇒ B =

hc

µBλ
≈ 0.051 T (14)

iRemember, owing to uncertainty we can only know a single component of the spin moment. If we choose the
field to be applied along the z axis, then the application of a magnetic field projects out the z component of the spin
moment, which can only take on values µs,z =±µB.

iiEven though this process is strongly forbidden, the abundance of hydrogen in the galaxy is sufficiently enormous
to make observation practical.



5. Dipole selection rules.
(a) For hydrogen, the energy levels through n=3 are shown below. What are the possible electric
dipole transitions for these states? It may be convenient to simply draw arrows in the diagram.
Recall the “selection rules” for electric dipole transitions, ∆l=±1. Spin may be ignored.
(b) Repeat for para- and ortho-helium, also shown below, treating both as distinct atoms.iii

See also: Pfeffer & Nir 3.3.2

You can change as many levels at a time as you like (i.e., move up or down arbitrarily), but the
∆l =±1 selection rule means you can must move one (and only one) unit to the left or right to
make a transition. Thus, the problem is reduced to drawing lines in the figures given. Note that
with the energy scales given, not all of the transitions are in the visible range – the longest lines
will be in the ultraviolet, the shortest in the infrared (or microwave, for closely-spaced He levels).
For the very closely-spaced levels (e.g., 3p and 3d) the transitions for He have been omitted for
clarity; the diagram quickly becomes quite complicated!
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iiiTwo types of helium: para-helium, with the two electron spins parallel (S= 0), and ortho-helium, with the two
electron spins antiparallel (S=1). According to the dipole selection rules, helium atoms cannot change by a radiative
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process from one to the other, as this would not conserve angular momentum, so ortho- and para-helium behave
largely as distinct atoms. (Forbidden transitions are not strictly forbidden, but violating the selection rules incurs a
cost of ∼105 in transition probability).

As the energy level diagram shows, the lowest state corresponds to para-helium, and the next highest excited
state ortho-helium. The ortho-helium excited state can be reached by electrical discharge excitation, a non-radiative
process (i.e., not obeying the same selection rules.) This excited state is very long lived (∼10 ms) because returning
to the ground state would violate selection rules.



6. Splitting of Sodium D lines. The electron’s intrinsic magnetic moment ~µs and intrinsic spin
angular momentum ~S are proportional to each other; their relationship can be written as

~µs = −gs
e

2m
~S = −gµb

~S (15)

with gs≈2. The energy of the electron in a effective magnetic field ~B is E=−~µs · ~B.

In Sodium, transitions occur between two spin-orbit-split L=1 states and a single L=0 state, lead-
ing to emission lines at 588.995 nm and 589.592 nm. Estimate the strength of the effective magnetic
field produced by the electron’s orbital motion (i.e., the effective field due to the spin-orbit inter-
action) which results in this wavelength difference. You may wish to make use of the relationship
given in problem 2. See also: Pfeffer & Nir 3.4.3,

http://hyperphysics.phy-astr.gsu.edu/HBASE/quantum/sodium.html#c2

The transition occurs between an L = 1 state and an L = 0 state; only the L = 1 state will split
due to the spin-orbit interaction. The difference in energy between the L = 1, ms = 1

2 and L = 1,
ms =−1

2 states will be ∆E=2µBB in an effective magnetic field B. The energy difference can also
be equated to the wavelength difference, using the relationship given in problem 2:

∆E = E(ms =
1
2
) − E(ms =−

1
2
) ≈ hc|∆λ|

λ2
= 2µBB (16)

Solving for B, with ∆λ=589.592−588.995≈0.597 nm and λ=(589.592+588.995)/2≈589.294 nm,

B =
hc∆λ

2µBλ2
=

(1240 eV · nm) (0.597 nm)

2 (57.9× 10−6 eV/T) (589.592 nm)2
≈ 18.4 T (17)

7. Pauli exclusion. What are the energies of the photons that would be emitted when the four-
electron system in the figure below returns to its ground state? See also: Pfeffer & Nir 3.4.5

The ground state must consist of a spin up and spin down electron in each of the two lowest
energy levels. The possible transitions returning the system to the ground state are shown above.
Transitions A and D have the same energy difference, and thus give rise to the same energy photon,
and thus only three different photons should be observed:

http://hyperphysics.phy-astr.gsu.edu/HBASE/quantum/sodium.html#c2
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A system of four electrons with three energy levels, their ground state, and the possible transitions to the ground state.

EA = ED = E3 − E2 = 9.36 eV − 4.16 eV = 5.20 eV (18)

EB = E2 − E1 = 4.16 eV − 1.04 eV = 3.12 eV (19)

EC = E3 − E1 = 9.36 eV − 1.04 eV = 8.32 eV (20)

8. Three non-interacting particles are in their ground state in an infinite square well;iv see the
figure above. What happens when a magnetic field is turned on which interacts with the spins of
the particles? Draw the new levels and particles (with spin).
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A system of three electrons in an infinite square well, and the shift of the energy levels when a magnetic field is applied.

After the external magnetic field is applied, the new value of each particle’s energy level Ei equals
ivRecall the energies in an infinite square well are E=n2h2/8ma2



the original level En plus the interaction (Zeeman) energy:

Ei = En −~µs · ~B = En − µszB = En + 2msµBB (21)

Since ms =±1
2 , the new levels will be displaced from the old by an amount ∆E =±µBB, with a

spin −1
2 (“down”) particle occupying the lower sublevel and a spin +1

2 (“up”) particle occupying
the upper sublevel. In contrast to the situation without a magnetic field present, the particle in
the n=2 level will have its spin −1

2 if the system is in the ground state.


