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Problem Set 9: Solutions

1. Hydrogen-like systems. Assuming a 3Li atom to be hydrogen-like, determine the ionization
energy of the 2s electron. Explain qualitatively the difference from the experimental value of
5.39 eV. Hint: two approximations are to: a) neglect the inner electrons, or b) presume they shield
the nucleus. These approximations bound the correct answer.

If we neglect the inner electrons, then the outer electron feels a nuclear charge of Ze = 3e. The
energy of the outer electron in the n=2 state is then

En = −
Z2Eo

n2
= −

9
4
Eo ≈ −30.6 eV (neglect inner electrons) (1)

Here Eo is the ground state Bohr energy, −13.6 eV. If we assume the inner electrons perfectly screen
the nucleus, then the outer electron feels a nuclear charge of only (Z− 2)e=e. It is then effectively
in a hydrogen-like environment, and the energy is simply

En = −
Eo

n2
= −

1
4
Eo ≈ −3.40 eV (perfect screening by inner electrons) (2)

These two extreme estimates bound the actual value of −5.39 eV.

2. Energetics of diatomic systems I. The dissociation energy of KI is 3.33 eV. Calculate the bond
length (interionic distance) for KI given that the electron affinity of I is 3.06 eV and the ionization
energy of K is 4.34 eV. (The measured bond length is 0.323 nm.) Hint: the dissociation energy is
the sum of the electrostatic energy required to separate the two species and the electron affinity,
minus the ionization energy.

The electrostatic energy required to separate KI into K+ and I− is the work required to move
bound charges of e and −e an infinite distance apart from an initial separation of ro, ke2/ro. The
dissociation energy can thus be written as

(dissociation energy) =
ke2

ro
+ (electron affinity) − (ionization energy) (3)

Solving for ro,

ro =
ke2

∆E
≈ 0.312 nm with ∆E = (dissociation energy)+(ionization energy)−(electron affinity)



(4)

3. Energetics of diatomic systems II. An approximate expression for the potential energy of two
ions as a function of their separation is

U(r) = −
ke2

r
+

b

r9
(5)

The first term is the usual Coulomb interaction, while the second term is introduced to account for
the repulsive effect of the two ions at small distances. (a) Find b as a function of the equilibrium
spacing ro. (b) Calculate the potential energy of KCl at its equilibrium spacing (ro = 0.279 nm).

The equilibrium spacing will be characterized by the net force between the ions being zero, or
equivalently, the potential energy being zero:

F(ro) = −
dU

dr

∣∣∣∣
r=ro

= 0 =
ke2

r2
o

−
9b

r1
o0

(6)

ke2r8
o = 9b (7)

b =
1
9
ke2r8

o (8)

Substituting this result back into our potential energy expression,

PE = U(r) = −
ke2

r
+

ke2r8
o

9r9
(9)

Evaluating at equilibrium,

U(ro) = −
ke2

ro
+

ke2

9ro
= −

8ke2

9ro
≈ −4.59 eV (10)

4. Energetics of diatomic systems III. An expression for the potential energy of two neutral atoms
as a function of their separation r is given by the Morse potential,

PE = U(r) = Po

[
1 − e−a(r−ro)

]2
(11)

(a) Show that ro is the atomic spacing and Po the dissociation energy. (b) Calculate the force
constant for small oscillations about r=ro.



As in the previous problem, equilibrium is characterized by dU/dr=0.

dU

dr
= 2Po

[
1 − e−a(r−ro)

] (
ae−a(r−ro)

)
= 0 (12)

Either of the terms in brackets could be zero. The latter only leads to the trivial solution of r→∞,
meaning there is no molecule in the first place. Setting the former term in brackets to zero,

0 = 1 − e−a(r−ro) =⇒ r = ro (13)

The dissociation energy is defined as the amount of energy required to take the system from
equilibrium at r=ro to complete breakup for r→∞. Thus,

(dissociation energy) =
[

lim
r→∞ U(r)

]
− U(ro) = Po − 0 = Po (14)

In other words, an amount of work Po is required to bring about an infinite separation of the atoms,
and this defines the dissociation energy.

If we wish to calculate a force constant, it is necessary to show that the force at least approximately
obeys Hooke’s law for small displacements, i.e., for a small displacement δ from equilibrium, δ =

r−ro, F(ro + δ)≈ kδ where k is the force constant.i We have already calculated the force versus
displacement:

F(r) = −
dU

dr
= −2Po

[
1 − e−a(r−ro)

] (
ae−a(r−ro)

)
= −2Poa

(
e−a(r−ro) − e−2a(r−ro)

)
F(ro + δ) = −2Poa

(
e−aδ − e−2aδ

)
(15)

For small δ, we may make use of the approximation eδ≈1 + δ + 1
2δ2 + · · · . Retaining terms only

up to first order,

F(ro + δ) ≈ −2Poa (1 − aδ − 1 + 2aδ) = −
(
2Poa2

)
δ =⇒ k = 2Poa2 (16)

Thus, for small displacements from equilibrium, we may treat the molecule as a mass-spring system,
with an effective force constant k.

5. Energetics of diatomic systems IV. In the potassium iodide molecule, presume that the K and
I atoms bond ionically by the transfer of one electron from K to I. (a) The ionization energy of K
is 4.34 eV, and the electron affinity of I is 3.06 eV. What energy is needed to transfer an electron

iEquivalently, we could show U(δ)≈ 1
2
kδ2.



from K to I, to form K+ and I− ions from neutral atoms? This is sometimes called the activation
energy Ea. (b) Another model potential energy function for the KI molecule is the Lennard-Jones
potential:

U(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

+ Ea (17)

where r is the internuclear separation distance, and σ and ε are adjustable parameters. The Ea term
is added to ensure correct asymptotic behavior at large r. At the equilibrium separation distance
r = ro = 0.305 nm, U(r) is a minimum, and U(ro) = −3.37 eV is the negative of the dissociation
energy. Evaluate σ and ε. (c) Calculate the force needed to break up a KI molecule. (d) Calculate
the force constant for small oscillations about r = ro. Hint: Set r = ro + δ, where δ/ro � 1 and
expand U(r) in powers of δ/ro up to second-order terms.

In order to transfer an electron, we must add the ionization energy of K to remove its electron,
but we will gain back the electron affinity of I once it has an extra electron. Thus, the net energy
required is

(ionization energy K) − (electron affinity I) = 4.34 eV − 3.06 eV = 1.28 eV (18)

Put another way, the following two reactions must occur and balance:

K + 4.34 eV −→ K+ + e−

I + e− −→ I− + 3.06 eV

K + I + 1.28 eV −→ K+ + I−

Thus, an activation energy of 1.28 eV is required.

We can find σ by enforcing the condition dU
dr

∣∣
r=ro

=0:

dU

dr

∣∣∣∣r = ro = 4ε

[
12σ12

r13
o

−
6σ6

r7
o

]
= 0 (19)

12σ12

r13
o

=
6σ6

r7
o

(20)

2σ6 = r6
o (21)

σ = 2−1/6ro ≈ 0.272 nm (22)

Knowing σ, we can find ε by evaluating U(ro), since we are given U(ro)=−Ediss =−3.37 eV.



U(ro) = 4ε

[(
2−1/6

)12
−
(
2−1/6

)6
]

+ Ea = −ε + Ea = −Ediss (23)

=⇒ ε = −(Ediss + Ea) ≈ 4.65 eV (24)

In order to find the force required to break up the molecule, we should first calculate the maximum
restoring force that the molecule is able to respond with. If we exceed that force, the molecule will
be broken.

F = −
dU

dr
= 4ε

[
12σ12

r13
−

6σ6

r7

]
(25)

This function has a clear maximum, which we can find by setting dF/dr=0:

dF

dr
= 4ε

[
−156σ12

r14
+

42σ6

r8

]
=

4ε

σ2

[
−156

(σ

r

)14
+ 42

(σ

r

)8
]

= 0

=⇒ r =

(
156
42

)1/6

σ ≈ 0.338 nm (26)

Applying the second derivative test, or quick graph, will verify that this is a maximum. Thus,

Fmax = F

((
156
42

)1/6

σ

)
= 4ε

[
12
(

42
156

)13/6

−

(
42
156

)7/6]
≈ 6.55 nN (27)

Thus, the molecule can apply a maximum restoring force of about 6.55 nN, so exceeding this force
will break up the molecule.

In order to find the force constant for small oscillations, we must either show that F(ro + δ)≈−kδ

or U(ro + δ) ≈ 1
2kδ2 for small displacements δ from equilibrium. The basic tactic is always the

same: if the displacement is small compared to the equilibrium distance, δ/ro�1, then we should
write the potential or force in such a way to use an expansion in δ/ro.

Starting from the potential:

U(ro + δ) = 4ε

[(
σ

ro + δ

)12

−

(
σ

ro + δ

)6]
+ Ea = 4ε

[(
2−1/6ro

ro + δ

)12

−

(
2−1/6ro

ro + δ

)6]
+ Ea

= 4ε

[
1
4

(
ro

ro + δ

)12

−
1
2

(
ro

ro + δ

)6]
+ Ea

= 4ε

1
4

(
1

1 + δ
ro

)12

−
1
2

(
1

1 + δ
ro

)6
+ Ea (28)



Since δ/ro� 1, we may use the binomial expansion to simplify, viz., (1 + δ/ro)n ≈ 1 + nδ/ro +
1
2n(n − 1)δ2/r2

o, keeping terms up to 2nd order.

U(ro + δ) = 4ε

1
4

(
1

1 + δ
ro

)12

−
1
2

(
1

1 + δ
ro

)6
+ Ea

≈ 4ε

[
1
4

(
1 − 12

δ

ro
+

12 · 11
2

δ2

r2
o

)
−

1
2

(
1 − 6

δ

ro
+

6 · 5
2

δ2

r2
o

)]
+ Ea

≈ ε

[
−1 + 36

δ2

r2
o

]
+ Ea = (Ea − ε) +

1
2

(
72ε

r2
o

)
δ2 = U(ro) +

1
2

(
72ε

r2
o

)
δ2 (29)

Thus, k=72ε/r2
o≈ 3600 eV/nm≈576 N/m. One can just as easily start with the force expression

to arrive at the same result, except that now we need only keep terms to first order in the binomial
expansion:

F(ro + δ) = 4ε

[
12σ12

(ro + δ)13 −
6σ6

(ro + δ)7

]
= 4ε

[
12

1
4r12

o

(ro + δ)13
− 6

1
2r6

o

(ro + δ)7

]
= 4ε

[
3
ro

(
1 +

δ

ro

)−13

−
3
ro

(
1 +

δ

ro

)−7]
≈ 4ε

[
3
ro

(
1 − 13

δ

ro

)
−

3
ro

(
1 − 7

δ

ro

)]
= −

(
72ε

r2
o

)
δ (30)

Again, the conclusion is k=72ε/r2
o.

6. Crystal lattice energy. Consider a one-dimensional chain of alternating positive and negative
ions. Show that the potential energy associated with one of the ions and its interactions with the
rest of this hypothetical crystal is

U(r) = −keα
e2

r
(31)

where the Madelung constant is α=2 ln 2 and r is the interionic spacing. Hint: the series expansion
for ln (1 + x) may prove useful in evaluating an infinite sum.

Pick any positive ion +e as the origin. Immediately to the right at a distance r, we have a negative
ion −e. The potential energy of this pair is −ke2/r. One more lattice spacing to the right, a
distance 2r from the origin, is another negative ion, whose potential energy with the ion at the
origin is ke2/2r. Continuing in this way, all ions to the right-hand side of the ion at the origin give
us a potential energy

URHS = −
ke2

r
+

ke2

2r
−

ke2

3r
+ . . . =

ke2

r

∞∑
n=1

(−1)n

n
= −

ke2

r

∞∑
n=1

(−1)n+1

n
(32)



To the left-hand side of the origin, there are just as many ions in the same arrangement, giving us
the same contribution to the potential energy. Thus,

Utot = 2URHS = −2
ke2

r

∞∑
n=1

(−1)n+1

n
(33)

The series we must evaluate is then

∞∑
n=1

(−1)n+1

n
(34)

This is known as the alternating harmonic series, and is known to evaluate to ln 2. This can be
seen readily from the Taylor expansion for ln (1 + x):

ln (1 + x) =

∞∑
n=1

(−1)n+1

n
xn =⇒ ln (2) =

∞∑
n=1

(−1)n+1

n
(35)

Thus, the potential energy is

Utot = 2URHS = −2
ke2

r

∞∑
n=1

(−1)n+1

n
= −keα

e2

r
with α = 2 ln 2 (36)

7. Free-electron gas I. (a) Obtain an expression for the Fermi energy at T =0 K for an electron gas
in a metal in terms of the total number of electrons, the volume, and fundamental constants. (b)
At T =0 K, what is the rms speed, in terms of the Fermi energy, of an electron gas in a metal?

The Fermi energy at T =0 is given by

EF

∣∣
T=0

 h2

2m

(
3π2N

V

)2/3

(37)

where N is the number of electrons in a volume V. A derivation may be found here:

http://en.wikipedia.org/wiki/Fermi_energy

This is the energy of the highest-energy electrons in a metal at T =0. If all this energy is available
as kinetic energy,

Ef =
1
2
mv2 =⇒ v =

√
2EF

m
(38)

http://en.wikipedia.org/wiki/Fermi_energy


8. Free-electron gas II. Show that the average kinetic energy of a conduction electron in a metal
at 0 K is Eav = 3

5EF. Hint: in general, the average kinetic energy is

Eav =
1

ne

∫
E N(E) dE (39)

where ne is the density of particles, N(E) dE is the number of electrons per unit volume that have
energies in [E,E + dE], and the integral is over all possible values of energy.

The Fermi energy, the energy of the highest occupied quantum state in a system of fermions at
absolute zero temperature, is a function of the number of fermions as found in the last problem. If
there are N particles in a volume V, then the highest occupied state has an energy

EF(T = 0) =
 h2

2m

(
3π2N

V

)2/3

(40)

Thus, as more and more particles are added, it takes more and more energy to add the last particle.
The total energy of the system, if there are enough particles to consider the distribution of states
to be quasi-continuous, is given by

Etot =

N∫
0

EF(N′) dN′ (41)

The average energy is simply the total energy divided by the number of particles:

Eavg =
1
N

N∫
0

EF(N′) dN′ =
1
N

N∫
0

 h2

2m

(
3π2N′

V

)2/3

dN′ =
1
N

 h2

2m

(
3π2

V

)2/3(3
5
N5/3

)
=

3
5
EF (42)

9. Ohmic conduction. An aluminum wire with a cross-sectional area of 4.00 × 10−6 m2 carries a
current of 5.00 A. Find the drift speed of the electrons in the wire. The density of aluminum is
2.70 g/cm3; assume each Al atom provides a single electron for conduction. Hint: how many atoms
per unit volume are there? Use your periodic table.

Each aluminum atom donates one mobile electron for conducting electricity. Therefore, finding the
number of carriers per unit volume n is equivalent to finding the number of aluminum atoms per
unit volume - easily found from the density and molar mass of aluminum and Avogadro’s number:



n =
[
2.70

g
cm3

] [100 cm
1 m

]3 [1 mol
27 g

] [
6.02× 1023 atoms

mol

] [
1

electron
atom

]
(43)

= 6.02× 1028 electrons
m3

(44)

Now we have the carrier density n, and we further know the current I and conductor area A. Since
the conduction is stated as due to electrons, we also know the charge per carrier q=e. This is as
much as we need to find the drift velocity:

vd =
I

nqA
=

5.00 A(
6.02× 1028 electrons

m3

) (
1.60× 10−19 C

electron
)
(4.00× 10−6 m2)

(45)

= 1.3× 10−4 A ·m
C = 1.3× 10−4 m/s (46)

If we remember that one Ampere is one Coulomb per second, the units come out just fine.


