
PH 253 / LeClair Spring 2013

Problem Set 1: Solutions

1. An atom of mass m1=m moves in the positive x direction with velocity v1=v. It collides with

and sticks to an atom of mass m2=2m moving in the positive y direction with speed v2=
2
3v. (a)

Find the resultant speed and direction of motion of the combination. (b) Find the kinetic energy

lost in this inelastic collision.

Solution: (a) Since this is an inelastic collision, all we can really do is conserve momentum.

Initially,m1 moves along the x axis andm2 along the y axis, so the initial components of momentum

are:

pxi = m1v1 (1)

pyi = m2v2 (2)

After the collision, we have a single object of mass m1 +m2, and it will move with some angle θ

with respect to the x axis at speed vf. Its components of momentum are:

pxf = (m1 +m2) vf cos θ (3)

pyf = (m1 +m2) vf sin θ (4)

Conservation of momentum gives:

pxi = pxf (5)

m1v1 = (m1 +m2) vf cos θ (6)

pyi = pyf (7)

m2v2 = (m1 +m2) vf sin θ (8)

The easiest thing to do now is to divide Eq. 8 by Eq. 6, and note m2=2m, v1=v, and v2=2/3v:

m2v2

m1v1
= tan θ =

2m · 23v
mv

=
4

3
(9)

=⇒ θ = tan1

(
4

3

)
≈ 53.1◦ ≈ 0.927 rad (10)

That gives the direction of the combined mass, the speed is then easily found from either Eq. 6 or

Eq. 8. Note that if tanθ=4/3, we have a 3-4-5 triangle, so sin θ=4/5 and cos θ=3/5.

vf =
m2v2

(m1 +m2) sin θ
=

2m · 23v
(m+ 2m)

(
4
5

) =
5

9
v (11)



(b) Finding the kinetic energy lost is just a matter of calculating it before and after the collision.

Initially, masses m1 and m2 travel at velocities v1 and v2:

Ki =
1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
mv2 +

1

2
(2m)

(
2

3
v

)2

=
17

18
mv2 (12)

After the collision, the combined mass travels at vf:

Kf =
1

2
(m1 +m2) v

2
f =

1

2
(m+ 2m)

(
5

9

)2

v2 =
25

54
mv2 (13)

The loss in kinetic energy is then

∆K = Ki − Kf =
17

18
mv2 −

25

54
mv2 =

13

27
mv2 (14)

∆K

Ki
=

26

51
≈ 51% (15)

2. (a) On the unrealistic assumption that there are no other charged particles in the vicinity, at

what distance below a proton would the upward force on an electron equal its weight? (b) What

is the induced EMF between the ends of the wingtips of a Boeing 737 when it is flying over the

magnetic north pole? Google has the numbers you require.

Solution: (a) This just means that the attractive force between the proton (charge e) and electron

(charge −e) at a distance d must balance the weight of the electron:

ke2

d2
= mg =⇒ d =

√
ke2

mg
≈ 5.08 [m] (16)

(b) The induced voltage can be found by considering the motion of the conducting metal plane in

a perpendicular magnetic field, and making a few rough but justifiable assumptions.

First, at the south magnetic pole, the magnetic field will be essentially straight down. If the 737

is flying level over the ground, this means that its metal (conducting) skin is in motion relative

to a magnetic field. This in turn means that there will be a motionally-induced voltage. If the

field is straight down, and the 737 travels straight forward, then positive charges will experience a

force in the port (left) direction, and negative charges toward the starboard (right). This means

that the wingtips will have a potential difference between them due to the magnetic force on the

charges in the conducting skin. If the wingspan is l meters, the airplane’s velocity v and the vertical

magnetic field B, then we know the potential difference due to motion in a magnetic field is ∆V=Blv.



The wingspan of a 737 is roughly 30 m, and its cruising speed is about 200 m/s.i Currently, the

earth’s magnetic fieldii at the south magnetic poleiii is about 60µT. Putting this together,

∆V = Blv = (60µT) (30 m) (200 m/s) ≈ 0.36 V

3. In Rutherford’s famous scattering experiments that led to the planetary model of the atom,

alpha particles (having charge +2e and masses of 6.64× 10−27 kg) were fired toward a gold nucleus

with charge +79e. An alpha particle, initially very far from the gold nucleus, is fired at a speed of

vi=2.00× 107 m/s directly toward the nucleus, as shown below. How close does the alpha particle

get to the gold nucleus before turning around? Assume the gold nucleus remains stationary, and

that energy is conserved.

+79e

+2e

vi vf = 0

d

+2e

Solution: We can treat this as a conservation of energy problem. The two energies of interest are

the kinetic energy of the alpha particle, and the potential energy of the alpha particle-gold nucleus

pair. Since the two are both positively charged, they will repel each other, and their electrical

potential energy will be positive at any finite distance. If the alpha particle is initially very, very

far away, we can approximate their starting separation as infinite, meaning their initial electrical

potential energy is zero, and the total energy of the system is just the alpha particle’s kinetic energy.

How close does the alpha particle get? When it used all of its initial kinetic energy up as electrical

potential energy. The closer it gets, the larger the electrical potential energy, and the more kinetic

energy it must spend. At some point, it is all gone, and the particle instantaneously stops and then

turns around. At that point of closest approach, the alpha particle’s kinetic energy is zero. Com-

paring the energy in the initial and final cases will allow us to find the distance of closest approach d.

To go further, we must make one approximation: even though v/c ∼ 0.067, and we should in

principle use the relativistic equation for kinetic energy, we will ignore it for simplicity. The error

we will incur will be only of order v/c, so .10% at best. With that out of the way, we can apply

conservation of energy. Let the alpha particle have charge qa and the gold nucleus charge qg, we

can plug in numbers later.

ihttp://en.wikipedia.org/wiki/Boeing_737
iihttp://www.ngdc.noaa.gov/geomag/magfield.shtml
iiihttp://en.wikipedia.org/wiki/South_Magnetic_Pole

http://en.wikipedia.org/wiki/Boeing_737
http://www.ngdc.noaa.gov/geomag/magfield.shtml
http://en.wikipedia.org/wiki/South_Magnetic_Pole


Ki +Ui = Kf +Uf (17)

1

2
mv2i + 0 = 0 +

keqaqg

d
(18)

d =
2keqaqg
mv2i

≈
(
8.99× 109

) (
2 · 1.60× 10−19

) (
79 · 1.60× 10−19

)
(6.64× 10−27) (2.00× 107)2

(19)

≈ 2.74× 10−14 m = 27.4 fm (20)

What is the acceleration at the moment it reverses? At this point the alpha particle is a distance

d from the gold nucleus. The force between them at that instant is just the electric force, and the

alpha particle’s acceleration will be its net force divided by its mass. Basically: acceleration comes

from force, and there is only one force present here.

a =
1

m
F =

1

m

keqaqg

d2
(21)

Using our previous expression for d,

a =
keqaqg

md2
=
keqaqg

m

m2v4i
4k2eq

2
aq

2
g

=
mv4i

4keqaqg
≈ 7.3× 1027 m/s2 (22)

4. A block of mass m is connected to two springs of force constants k1 and k2 as shown below. The

block moves on a frictionless table after it is displaced from equilibrium and released. Determine

the period of simple harmonic motion.

m

(a)

k1 k2

(b)

k1 k2

m

Figure P15.71
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spring, as shown in Figure P15.68. (a) Static extensions
of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured
for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, re-
spectively. Construct a graph of Mg versus x, and per-
form a linear least-squares fit to the data. From the slope
of your graph, determine a value for k for this spring.
(b) The system is now set into simple harmonic motion,
and periods are measured with a stopwatch. With
M ! 80.0 g, the total time for 10 oscillations is measured
to be 13.41 s. The experiment is repeated with M values
of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding
times for 10 oscillations of 12.52, 11.67, 10.67, 9.62, and
7.03 s. Compute the experimental value for T from each
of these measurements. Plot a graph of T 2 versus M, and
determine a value for k from the slope of the linear least-
squares fit through the data points. Compare this value
of k with that obtained in part (a). (c) Obtain a value for
ms from your graph and compare it with the given value
of 7.40 g.

A smaller disk of radius r and mass m is attached rigidly to
the face of a second larger disk of radius R and mass M as
shown in Figure P15.69. The center of the small disk is
located at the edge of the large disk. The large disk is
mounted at its center on a frictionless axle. The assembly is
rotated through a small angle " from its equilibrium position
and released. (a) Show that the speed of the center of the
small disk as it passes through the equilibrium position is

(b) Show that the period of the motion is

T ! 2# ! (M $ 2m)R  2 $ mr  2

2mgR "1/2

v ! 2 ! Rg(1 % cos ")
(M/m) $ (r/R)2 $ 2 "

1/2

69.

70. Consider a damped oscillator as illustrated in Figures
15.21 and 15.22. Assume the mass is 375 g, the spring
constant is 100 N/m, and b ! 0.100 N & s/m. (a) How
long does it takes for the amplitude to drop to half its
initial value? (b) What If? How long does it take for the
mechanical energy to drop to half its initial value? 
(c) Show that, in general, the fractional rate at which the
amplitude decreases in a damped harmonic oscillator is
half the fractional rate at which the mechanical energy
decreases.

71. A block of mass m is connected to two springs of force con-
stants k1 and k2 as shown in Figures P15.71a and P15.71b.
In each case, the block moves on a frictionless table after it
is displaced from equilibrium and released. Show that in
the two cases the block exhibits simple harmonic motion
with periods

(b)      T ! 2# √ m
k1 $ k2

(a)      T ! 2# √ m(k1 $ k2)
k1k2

72. A lobsterman’s buoy is a solid wooden cylinder of radius r
and mass M. It is weighted at one end so that it floats up-
right in calm sea water, having density '. A passing shark
tugs on the slack rope mooring the buoy to a lobster trap,
pulling the buoy down a distance x from its equilibrium
position and releasing it. Show that the buoy will execute
simple harmonic motion if the resistive effects of the
water are neglected, and determine the period of the
oscillations.

73. Consider a bob on a light stiff rod, forming a simple
pendulum of length L ! 1.20 m. It is displaced from the
vertical by an angle "max and then released. Predict the
subsequent angular positions if "max is small or if it is large.
Proceed as follows: Set up and carry out a numerical
method to integrate the equation of motion for the simple
pendulum:

d  2"

dt2 ! %
g
L

 sin "

R

M

θθ

mv

Figure P15.69

m

Figure P15.68

Solution: Say we displace the block to the right by an amount x. Both springs will try to bring

the block back toward equilibrium - one will pull, one will push, but both will act in the same

direction. That means the net force is

Fnet = −k1x− k2x = −(k1 + k2) x = ma (23)

This is exactly the same as what we would find for a single spring, except the spring constant has

become k1 + k2 rather than just k. The solution must be

T =
2π

ω
= 2π

√
m

k1 + k2
(24)



5. Calculate the fraction of molecules in a gas that are moving with translational kinetic energies

between 0.02kBT and 0.04 kBT .

Solution: Referring to chapter 1 in your text, we calculate the number of particles in an energy

range [E1,E2] by integrating the Maxwell-Boltzmann distribution over that interval:

N(E1 : E2) =

E2∫
E1

2N√
π

1

(kBT)
3/2
E1/2e−E/kBT dE (25)

Of course now we have a problem, how to get rid of the T ’s? If you look carefully, you’ll notice

that neither energy nor temperature is really the crucial variable, it is the dimensionless quantity

E/kBT . This suggests a substitution u= E/kBT , du= dE/kBT , making the limits of integration

E1/kBT=0.02 and E2/kBT=0.04.

N(u1 : u2) =
2N√
π

0.04∫
0.02

√
ue−u du (26)

The fraction of particles in the energy range of interest is then:

N(u1 : u2)

N
=

2√
π

0.04∫
0.02

√
ue−u du ≈ 0.00377 (27)

The integral is readily found numerically, e.g., using www.wolframalpha.com.

www.wolframalpha.com

