
PH 253 / LeClair Spring 2013

Problem Set 3: Solutions

1. In an experiment to find the value of h, light at wavelengths 218 and 431 nm were shone on a

clean sodium surface. The potentials that stopped the fastest photoelectrons were 5.69 and 0.59 V,

respectively. What values of h and W, the sodium work function, are deduced?

Solution: The stopping potential can be related to the frequency f of incident light and the metal’s

work function W:

e∆Vstop = hf−W (1)

In terms of wavelength, we know λf=c, so

e∆Vstop =
hc

λ
−W (2)

We are given two sets of data, pairs of stopping potentials and incident wavelengths: . That gives

us two equations and two unknowns:

5.69 eV =
hc

218 nm
−W (3)

0.59 eV =
hc

431 nm
−W (4)

We wish to solve or h and W, with c being a known constant. The clever thing to do is subtract

these two equations, that isolates h.

5.10 eV = h
( c

218 nm
−

c

431 nm

)
(5)

=⇒ h = 7.5× 10−15 eV · s = 1.2× 10−38 J · s (6)

Plugging our value of h back into either of the two preceding equations gives

W = 6.98× 10−19 J = 4.36 eV (7)

This is not a particularly good experiment - the sodium work function is more like 2.28 eVi, and

the accepted value for Planck’s constant is about half what this experiment finds.

2. A 0.3 MeV X-ray photon makes a “head on” collision with an electron initially at rest. Using

conservation of energy and momentum, find the recoil velocity of the electron. Check your result

with the Compton formula.

ihttp://hyperphysics.phy-astr.gsu.edu/hbase/tables/photoelec.html

http://hyperphysics.phy-astr.gsu.edu/hbase/tables/photoelec.html


Solution: Let E and E′ be the initial and final energies of the photon, respectively. Conservation

of energy then gives:

E = E′ + (γ− 1)mc2 (8)

where the second term on the right is the electron’s kinetic energy. For a head-on collision, the

photon will recoil in the opposite direction, and the electron along the photon’s original direction.

Conservation of momentum then yields

E

c
= −

E′

c
+ γmv (9)

Writing the two equations together, after multiplying the second by c,

E− E′ = (γ− 1)mc2 (10)

E+ E′ = γmvc (11)

Adding these two together allows us to eliminate E′:

2E = (γ− 1)mc2 + γmvc = mc2

(
1√

1 − v2/c2
+

v/c√
1 − v2/c2

− 1

)
(12)

Now we just solve for v

2E

mc2
=

1 + v/c√
1 − v2/c2

− 1 =
1 + v/c√

(1 − v/c) (1 + v/c)
− 1 =

√
1 + v/c

1 − v/c
− 1 (13)

1 + v/c

1 − v/c
=

(
1 +

2E

mc2

)2

(14)

v

c
=

(
1 + 2E/mc2

)2
− 1

(1 + 2E/mc2)2 + 1
≈ 0.65 (15)

How to check this with the Compton formula? You have the incident electron’s energy, and thus

its wavelength. You could use the Compton formula to get the exiting photon’s wavelength, from

which you could get its energy. The difference between incident and exiting photons’ wavelengths is

the electron’s kinetic energy, which must be (γ− 1)mc2. Given γ, you can find v for the electron.

3. A cavity is maintained at a temperature of 1650 K. At what rate does energy escape from the

interior of the cavity through a hole in its wall of diameter 1.00 mm?

Solution: The rate of energy escape is just the emitted power. The total emitted power per unit

area over all wavelengths is given by the StefanBoltzmann law: I= σT4. Given a temperature of



1650 K,

I = σT4 =
(
5.67× 108 W/m2 ·K4

)
(1650 K)4 ≈ 4.2× 105 W/m2 (16)

This power per unit area is emitted uniformly over the area of the hole, so the total power is:

P = IA =
(
4.2× 105 W/m2

)
(π) (0.0005 m)2 ≈ 0.33 W (17)

4. Radio waves have a frequency of the order of 1 to 100 MHz. (a) What is the range of energies

of these photons? (b) Our bodies are continuously bombarded by these photons. Why are they

not dangerous to us?

Solution: (a) The energy per photon is given by E=hf. Thus

Elow = hflow =
(
6.626× 10−34 J · s

) (
1× 106 s−1

)
≈ 6.626× 10−28 J = 4.141× 10−9 eV (18)

Ehigh = hfhigh =
(
6.626× 10−34 J · s

) (
1× 108 s−1

)
≈ 6.626× 10−26 J = 4.141× 10−7 eV (19)

(b) These photons of negligible energy compared to the binding energies of molecules in our body,

which are of the order of one to a few electron volts. Their energy is negligible compared to the

thermal energy every atom in our bodies is already subject to, or the energy photons in ordinary

sunlight.

5. An atom absorbs a photon of wavelength 375 nm and immediately emits another photon of

wavelength 580 nm. What is the net energy absorbed by the atom in this process?

Solution: We just need to calculate the difference in energy between the incident and emitted

photons, that must be the energy absorbed by the electron. It is useful to note that hc≈1240 eV·nm

in finding the numerical result.

Ee- = hfi − hfa =
hc

λi
−
hc

λa
≈ 1240

(
1

375
−

1

580

)
nm ≈ 1.17 eV (20)

The incident photon has an energy of about 3.3 eV, and the electron absorbed just over a third of

it.

6. The Compton shift in wavelength ∆λ is independent of the incident photon energy Ei = hfi.

However, the Compton shift in energy, ∆E=Ef−Ei is strongly dependent on Ei. Find the expression

for ∆E. Compute the fractional shift in energy for a 10 keV photon and a 10 MeV photon, assuming

a scattering angle of 90◦.

Solution: The energy shift is easily found from the Compton formula with the substitution λ=

hc/E:



λf − λi =
hc

Ef
−
hc

Ei
=

h

mc
(1 − cos θ) (21)

cEi − cEf
EiEf

=
1 − cos θ

mc
(22)

∆E = Ei − Ef =

(
EiEf
mc2

)
(1 − cos θ) (23)

∆E

Ei
=

(
Ef
mc2

)
(1 − cos θ) (24)

Thus, the fractional energy shift is governed by the photon energy relative to the electron’s rest

mass, as we might expect. In principle, this is enough: one can plug in the numbers given for Ei

and θ, solve for Ef, and then calculate ∆E/Ei as requested. This is, however, inelegant. One should

really solve for the fractional energy change symbolically, being both more elegant and enlightening

in the end. Start from Eq. 24 isolate Ef:

Ei − Ef
Ei

= 1 −
Ef
Ei

=
Ef
mc2

(1 − cos θ) (25)

1 = Ef

[
1

Ei
+

1

mc2
(1 − cos θ)

]
(26)

Ef =
1

1/Ei + (1 − cos θ) /mc2
=

mc2Ei
mc2 + Ei (1 − cos θ)

(27)

Now plug that back into the expression for ∆E we arrived at earlier, Eq. 24:

∆E

Ei
=

(
1

mc2

)(
mc2Ei

mc2 + Ei (1 − cos θ)

)
(1 − cos θ) (28)

∆E

Ei
=

Ei (1 − cos θ)

mc2 + Ei (1 − cos θ)
=

(
Ei
mc2

)
(1 − cos θ)

1 +

(
Ei
mc2

)
(1 − cos θ)

(29)

This is even more clear (hopefully): Compton scattering is strongly energy-dependent, and the

relevant energy scale is set by the ratio of the incident photon energy to the rest energy of the

electron, Ei/mc
2. If this ratio is large, the fractional shift in energy is large, and if this ratio is

small, the fractional shift in energy becomes negligible. Only when the incident photon energy is an

appreciable fraction of the electron’s rest energy is Compton scattering significant. The numerical

values required can be found most easily by noting that the electron’s rest energy is mc2=511 keV,

which means we don’t need to convert the photon energy to joules. One should find:



∆E

Ei
≈ 0.02 10 keV incident photon, θ=90◦ (30)

∆E

Ei
≈ 0.95 10 MeV incident photon, θ=90◦ (31)

Consistent with our symbolic solution, for the 10 keV photon the energy shift is negligible, while

for the 10 MeV photon it is extremely large. Conversely, this means that the electron acquires a

much more significant kinetic energy after scattering from a 10 MeV photon compared to a 10 keV

photon.

7. Assume the sun radiates like a black body at 5500 K. Assume the moon absorbs all the radiation

it receives from the sun and reradiates an equal amount of energy like a black body at temperature

T . The angular diameter of the sun seen from the moon is about 0.01 rad. What is the equilibrium

temperature T of the moon’s surface? (Note: you do not need any other data than what is contained

in the statement above.

Solution: The geometry of the problem is shown below, where δ is the angular diameter, Rm the

moon’s radius, Rs the sun’s radius, and D the sun-moon distance.

δ

Rs
Rm

D

The definition of angular diameterii, using the distances in the figure above, is

tan
δ

2
=
Rs

D
(32)

With geometry in hand, we now need to balance the sun’s power received by the moon with

the power that the moon will re-radiate by virtue of its being at temperature Tm. Any body at

temperature T emits a power P= σT4A, where A is the area over which the radiation is emitted

iiSee, e.g., http://en.wikipedia.org/wiki/Angular_diameter

http://en.wikipedia.org/wiki/Angular_diameter


and σ is a constant. Thus, since the sun emits radiation over its whole surface area 4πR2s,

Ps = σT
4
s

(
4πR2s

)
(33)

At a distance D corresponding to the moon’s position, this power is spread over a sphere of radius

D and surface area 4πD2. The amount of power the moon receives just depends on the ratio its

absorbing area to the total area over which the power is spread out. The moon absorbs radiation

over an area corresponding to its cross section, πR2m, so the fraction of the sun’s total power that

the moon receives is πR2m/4πD
2. Thus, the moon receives a power

Pmr = Ps
πR2m
4πD2

= Ps
R2m
4D2

= σT4s
(
4πR2s

) R2m
4D2

(34)

Absorbing this radiation from the sun will cause the moon to heat up to temperature Tm, and

it will re-emit radiation as a black body at temperature Tm. Though the moon absorbs over its

cross-sectional area, it emits over its whole surface area, so its emitted power is

Pme = σT
4
m

(
4πR2m

)
(35)

Equilibrium requires that the power the moon receives equal the power the moon emits, so

Pmr = Pme (36)

σT4s
(
4πR2s

) R2m
4D2

= σT4m
(
4πR2m

)
(37)

T4s
R2s

4D2
= T4m (38)

Tm = Ts

√
Rs

2D
= Ts

√
1

2
tan

δ

2
≈ 275 K (39)

Compare this with a mean lunar surface temperature at the equator of 220 K – not bad given the

approximate geometry, and complete ignorance of reflection! It is interesting to see that the moon’s

radius does not factor in at all – it determines both the absorbed and emitted power in exactly the

same way, and ends up canceling out.

8. Presume the surface temperature of the sun to be 5500 K, and that it radiates approximately as

a blackbody. What fraction of the sun’s energy is radiated in the visible range of λ=400− 700 nm?

One valid solution is to plot the energy density on graph paper and find the result numerically.

Solution: The emitted power per unit area per unit wavelength for a blackbody is given in a

previous problem:

I(λ, T) =
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

(40)



The power per unit area emitted over a range of wavelengths λ1 to λ2 is found by integrating I(λ, T)

over those limits, and the total power is integrating over all wavelengths from 0 to ∞. The fraction

we desire is then the power over wavelengths λ1 to λ2 divided by the total power:

f = (fraction) =

λ2∫
λ1

I(λ, T)dλ

∞∫
0

I(λ, T)dλ

(41)

Let us first worry about the indefinite integral and put it in a bit simpler form.∫
I(λ, T)dλ =

∫
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

dλ (42)

It is convenient to make a change of variables to

u =
hc

λkbT
or λ =

hc

ukbT
(43)

This substitution implies

du =
hc

kbT

(
−dλ

λ2

)
= −

hc

kbT

(
kbTu

hc

)2

dλ = −
u2kbT

hc
dλ (44)

dλ = −
hc

u2kbT
du (45)

Performing the substitution,∫
I(λ, T)dλ =

∫
8πhc2

λ5

[
e

hc
λkbT − 1

]−1

dλ =

∫
8πhc2u5k5bT

5

h5c5
1

eu − 1

−hc

u2kbT
du (46)

= −
8πk4bT

4

h3c2

∫
u3

eu − 1
du (47)

The overall constants multiplying the integral will cancel in the fraction we wish to find:

f =

8πk4bT
4

h3c2

u2∫
u1

u3

eu−1 du

8πk4bT
4

h3c2

∞∫
0

u3

eu−1 du

=

u2∫
u1

u3

eu−1 du

0∫
∞ u3

eu−1 du

(48)

Here the new limits of integration for the numerator are u1=
hc

λ1kbT
≈ 6.55 m−1 and u2=

hc
λ1kbT

≈



3.74 m−1, and the denominator has limits of ∞ and 0 after the substitution.

f =

3.74∫
6.55

u3

eu−1 du

0∫
∞ u3

eu−1 du

(49)

As it turns out, the integral in the denominator is known, and has a numerical value of π4/15. The

integral in the numerator has no closed-form solution, and must be found numerically. One thing

we notice is that the denominator contains a factor eu−1, and at the limits of integration we have

e3.74 ≈ 42 (50)

e6.55 ≈ 700 (51)

In this case, since eu�1, to a good approximation we can write

1

eu − 1
≈ 1

eu
= e−u (52)

The error we make in this approximation is in the worst case of order 1/43 ∼ 2% This makes the

integral in the numerator of our fraction a known one, which can be integrated by parts:

3.74∫
6.55

u3

eu − 1
du ≈

3.74∫
6.55

u3e−u du = e−u
(
u3 + 3u2 + 6u+ 6

) ∣∣∣∣3.74
6.55

≈ 2.29 (53)

Thus,

f ≈ 2.29

π4/15
≈ 0.35 (54)

About 35% of the sun’s radiation should be in the visible range.iii A more exact numerical calcula-

tion gives closer to 36%, meaning our approximation above was indeed accurate to about 2%. One

can do the “exact” numerical calculation from the start with Wolfram Alpha, for example, rather

than resorting to approximations like we have here.

9. Show that it is impossible for a photon striking a free electron to be absorbed and not scattered.

Solution: All we really need to do is conserve energy and momentum for photon absorption by

iiiThis is what leaves the sun, to figure out what reaches the earth’s surface we would have to account for reflection
and absorption by the atmosphere. The fraction of visible light is closer to 42% at the earth’s surface; see uvb.nrel.

colostate.edu/UVB/publications/uvb_primer.pdf for example.

uvb.nrel.colostate.edu/UVB/publications/uvb_primer.pdf
uvb.nrel.colostate.edu/UVB/publications/uvb_primer.pdf


a stationary, free electron and show that something impossible is implied. Before the collision, we

have a photon of energy hf and momentum h/λ and an electron with rest energy mc2. Afterward,

we have an electron of energy (γ− 1)+mc2 =
√
p2c2 +m2c4 (i.e., the afterward the electron has

acquired kinetic energy, but retains its rest energy) and momentum pe=γmv. Momentum conser-

vation dictates that the absorbed photon’s entire momentum be transferred to the electron, which

means it must continue along the same line that the incident photon traveled. This makes the

problem one dimensional, which is nice.

Enforcing conservation of energy and momentum, we have:

(initial) = (final) (55)

hf+mc2 =
√
p2c2 +m2c4 energy conservation variant 1 (56)

hf+mc2 = (γ− 1)mc2 energy conservation variant 2 (57)

h

λ
= pe = γmv momentum conservation (58)

From this point on, we can approach the problem in two ways, using either expression for the

electron’s energy. We’ll do both, just to give you the idea. First, we use conservation of momentum

to put the electron momentum in terms of the photon frequency:

h

λ
= pe =⇒ hc

λ
= hf = pec (59)

Now substitute that in the first energy conservation equation to eliminate pe, square both sides,

and collect terms:

(
hf+mc2

)2
=
(√

p2c2 +m2c4
)2

=
(√

h2f2 +m2c4
)2

(60)

h2f2 + 2hfmc2 +m2c4 = h2f2 +m2c4 (61)

2hfmc2 = 0 =⇒ f = 0 =⇒ pe = v = 0 (62)

Thus, we conclude that the only way a photon can be absorbed by the stationary electron is if its

frequency is zero, i.e., if there is no photon to begin with! Clearly, this is silly.

We can also use the second variant of the conservation of energy equation along with momentum

conservation to come to an equally ridiculous conclusion:



hf =
hc

λ
= (γ− 1)mc2 energy conservation variant 2 (63)

h

λ
= γmv or

hc

λ
= γmvc momentum conservation (64)

=⇒ γmvc = (γ− 1)mc2 (65)

(γ− 1) c = γv (66)

γ− 1

γ
=
v

c
=

√
1 −

1

γ2
(definition of γ) (67)(

γ− 1

γ

)2

= 1 −
1

γ2
(68)

γ2 − 2γ+ 1 = γ2 − 1 (69)

γ = 1 =⇒ v = 0 (70)

Again, we find an electron recoil velocity of zero, implying zero incident photon frequency, which

means there is no photon in the first place! Conclusion: stationary electrons cannot absorb photons,

but they can Compton scatter them.


