
PH 253 / LeClair Spring 2013

Problem Set 4: “Whither, thou turbid wave”
SOLUTIONS

Question zero is probably where the name of the problem set came from: “Whither, thou turbid

wave?” It is from a Longfellow poem, The Wave, which you can find here: http://www.litscape.

com/author/Henry_Wadsworth_Longfellow/The_Wave.html.

1. The wavefunction of a transverse wave on a string is

ψ(x, t) = (30.0 cm) cos [(6.28 rad/m) x− (20.0 rad/s) t] (1)

Compute the frequency, wavelength, period, amplitude, phase velocity, and direction of motion.

Solution: The wavefunction has the form

ψ(x, t) = A sin (kx−ωt+ δ) (2)

which lets us immediately identify

ω = 2πf = 20 rad/s =⇒ f =
2π

ω
=

10

π
s−1 (3)

k =
2π

λ
= 6.28 rad/m =⇒ λ =

2π

k
≈ 1.0 m (4)

A = 30 cm (5)

v =
ω

k
≈ 3.18 m/s (6)

Since the argument has the form kx−ωt, the wave is traveling along the +x direction.

2. What is the uncertainty in the location of a photon of wavelength 300 nm if this wavelength is

known to an accuracy of one part in a million?

Solution: The momentum of the photon is

p =
h

λ
(7)

The uncertainty in the photon momentum can be related to the uncertainty in wavelength (as we

have done before with wavelength and energy uncertainty).

∆p =

∣∣∣∣∂p∂λ
∣∣∣∣∆λ =

h

λ2
∆λ =

p∆λ

λ
(8)

http://www.litscape.com/author/Henry_Wadsworth_Longfellow/The_Wave.html
http://www.litscape.com/author/Henry_Wadsworth_Longfellow/The_Wave.html


Using the uncertainty principle,

∆x >
 h

2∆p
=

 hλ

2p∆λ
≈ 23.9 mm (9)

This is a huge distance for a photon, but keep in mind that a photon takes only about 80 psi to

cover this distance!

3. Find the potential difference through which electrons must be accelerated (as in an electron

microscope, for example) if we wish to resolve: (a) a virus of diameter 12 nm, (b) an atom of

diameter 0.12 nm, (c) a proton of diameter 1.2 fm. Show your work, and do not forget about

relativity.

Solution: The resolution of electron waves is roughly their wavelength. Wavelength we can find

from momentum, from which we can get kinetic energy. Conservation of energy dictates that an

electron accelerated from rest through a potential difference ∆V, thereby acquiring potential en-

ergy e∆V, will have a kinetic energy K= e∆V. Given that the smallest distance is well below the

electron’s Compton wavelength, we expect relativity may be important for at least that resolution,

and we should perform a relativistic analysis.

An energy balance using the relativistic form for kinetic energy gives

K = e∆V =
√
p2c2 +m2c4 −mc2 (10)

Solving for p=h/λ, we can relate wavelength and potential difference

(
e∆V +mc2

)2
= p2c2 +m2c4 (11)

p2 =
1

c2

(
e∆V +mc2

)2
−m2c2 =

h2

λ2
(12)

We can now find the potential difference in terms of the desired wavelength, which sets the micro-

scope’s resolution

h2c2

λ2
+m2c4 =

(
e∆V +mc2

)2
(13)

e∆V =

√(
hc

λ

)2

+ (mc2)2 −mc2 relativistic (14)

For simplicity in the resulting calculations, we can note hc ≈ 1240 eV · nm, mc2 ≈ 511 keV, and

1 fm=10−6 nm. This way, putting the wavelength in nm we obtain e∆V in electron volts, and the

ip = pico = 10−12.



same numerical value is ∆V in volts. We can also note the classical result, which makes use of

K=p2/2m:

e∆V =

(
hc

λ

)2 1

2mc2
classical (15)

wavelength (nm) ∆V (relativistic) ∆V (classical)

12 0.01 V 0.01 V
0.12 100 V 100 V
1.2× 10−6 109 V 1012 V

Even at 0.12 nm resolution the classical result is just fine, but for fm resolution, it breaks down

badly.

4. In order to study the atomic nucleus, we would like to observe the diffraction of particles

whose de Broglie wavelength is about the same size as the nuclear diameter, about 14 fm for a

heavy nucleus such as lead. What kinetic energy should we use if the diffracted particles are (a)

electrons? (b) Neutrons? (c) Alpha particles (m=4 u)?

Solution: We can make use of the result of the previous problem here – all we need to do is skip

the step where we set K=e∆V and solve for kinetic energy instead. That gives:

K =

√(
hc

λ

)2

+ (mc2)2 −mc2 (16)

particle rest energy mc2 K (relativistic) K (classical)

electron 511 keV 88 MeV 7.7 GeV
neutron 940 MeV 4.2 MeV 4.2 MeV
α 3.73 GeV 1.1 MeV 1.1 MeV

The electron is clearly deeply in the relativistic limit, since the classical expression fails badly. One

way to see this is that the kinetic energy implied far exceeds the rest mass of the electron, while

for the other particles the kinetic energy is well below the rest mass. When the particle’s energy is

of order its rest mass, we expect relativistic effects to be important. Another rule of thumb is that

the Compton wavelength λc=h/mc for the particle in question is roughly the scale at which one

has to worry about relativistic and quantum effects.

5. The speed of an electron is measured to within an uncertainty of 2.0 × 104 m/s. What is the

size of the smallest region of space in which the electron can be confined?

Solution: Since v/c∼ 10−4, we need not worry about relativity. Momentum is then just p=mv,



and since m is a constant for an electron, we can say ∆p=m∆v. We are given ∆v=2.0× 104 m/s,

so we can just apply the uncertainty principle.

∆x∆p = ∆x (m∆v) >
h

4π
(17)

=⇒ ∆x =
h

4πm∆v
=

 h

2m∆v
≈ 2.8 nm (18)

6. Use the distribution of wave numbers

A(k) = Aoe
−(k−ko)

2/2(∆k)2 k ∈ R (19)

and equation 4.23 from your text, viz.,

y(x) =

∫
A(k) cos kxdk (20)

to obtain equation 4.25 from your text, viz.,

y(x) = Ao∆k
√

2πe−(∆kx)2/2 coskox (21)

Solution: The mathematics will be far easier if we write the function y(x) as a complex exponential

and take the real part later:

y(x) =

∫
A(k) cos kxdk = A(k)<

{
eikx
}
dk = Aoe

−(k−ko)
2/2(∆k)2<

{
eikx
}
dk (22)

Remembering that we will take the real part in the end, integrating over all possible k gives

y(x) =

∞∫
−∞

Aoe
−(k−ko)

2/2(∆k)2eikx dk (23)

Collect the exponential terms and expand, then factor out the parts that don’t contain k (since

they are not integrated)



y(x) =

∞∫
−∞

Aoe
−(k−ko)

2/2(∆k)2eikx dk = Ao

∞∫
−∞

e
− 1

2(∆k)2
[k2−2kko+k

2
o−2ik(∆k)2x]

dk (24)

= Ao

∞∫
−∞

e
− 1

2(∆k)2
[k2−2k(ko+i(∆k)2x)]

e
−

k2o
2(∆k)2 dk (25)

Let a= ko + i (∆k)2 x for convenience, and note that the second exponential term can be pulled

from the integral.

y(x) = Aoe
−

k2o
2(∆k)2

∞∫
−∞

e
−k2−2ak

2(∆k)2 dk (26)

The part remaining to be integrated is almost a Gaussian, which we would know what to do with.

We can make it a Gaussian by noting that k2 − 2ak=(k− a)2 − a2.

y(x) = Aoe
−

k2o
2(∆k)2

∞∫
−∞

e
−

(k−a)2−a2

2(∆k])2 dk = Aoe
−

k2o
2(∆k)2

∞∫
−∞

e
2a2

2(∆k)2 e
−

(k−a)2

2(∆k])2 dk (27)

Once again the second exponential term doesn’t depend on k, so we may remove it from the integral.

We will also substitute back in a=ko + i (∆k)
2 x:

y(x) = Aoe
−

k2o
2(∆k)2 e

(ko+i(∆k)2x)
2

2(∆k)2

∞∫
−∞

e
−

(k−a)2

2(∆k)2 dk (28)

The integral is now just a Gaussian, which evaluates to ∆k
√

2π. Expand what remains and simplify:

y(x) = Ao∆k
√

2π e
1

2(∆k)2
[−k2o+k2o+2iko(∆k)

2x−(∆k)4x2]
= Ao∆k

√
2π e−x

2(∆k)2/2eikox (29)

Now recall we only want the real part of the expression. The only complex quantity left is eikox,

and <
{
eikox

}
=cos kox. Thus we obtain the desired result:

y(x) = Ao∆k
√

2π e−x
2(∆k)2/2 coskox (30)

7. A particle of mass m is confined to a one-dimensional line of length L. From arguments based

on the uncertainty principle, estimate the value of the smallest energy that the body can have.



Solution: The particle must be somewhere within the given segment, so the uncertainty in its

position cannot be greater than L. If we say ∆x=L, the uncertainty principle implies a momentum

uncertainty of ∆p>h/4πL. With maximum position uncertainty, we have a minimum momentum

uncertainty. This in turn implies a minimum energy, since K=p2/2m.

If we assume that the minimum momentum is just half of the uncertainty (i.e., the momentum may

be zero plus or minus half the uncertainty), then pmin=
1
2∆p=h/8πL. Thus,

Kmin =
p2

2m
=

h2

128π2mL2
(31)

Given how crude our arguments are, the dependence on mass and length agrees reasonably well

with the minimum energy for a particle in a one-dimensional potential well we derived in class,

E1 =
h2

8mL2
(32)

8. (a) Find the de Broglie wavelength of a nitrogen molecule in air at room temperature (293 K). (b)

The density of air at room temperature and atmospheric pressure is 1.292 kg/m3. Find the average

distance between air molecules at this temperature and compare with the de Broglie wavelength.

What do you conclude about the importance of quantum effects in air at room temperature? (c)

Estimate the temperature at which quantum effects might become important.

Solution: (a) The de Broglie wavelength depends on the momentum, which depends on mass and

velocity. The mass of a nitrogen molecule is 28 u or 4.65× 10−26 kg. What its its average velocity?

Neglecting vibrations of the molecule, each degree of freedom (axis of motion) gets on average 1
2kBT

worth of energy, for a total of 3
2kBT average thermal energy. This shows up as kinetic energy of

the molecule, so on average:

1

2
m〈v〉2 = 3

2
kBT (33)

=⇒ 〈v〉 =
√

3kBT

m
(34)

The de Broglie wavelength is then, on average,

〈λ〉 = h

m〈v〉
=

h√
3kBTm

(35)

At room temperature, this is about 0.03 nm.



(b) We don’t even really need the density in fact. We know that at standard temperature and

pressure, one mole of gas is about 6 × 1023 molecules and takes up 22.4 L (note 1 L = 0.001 m3).

This lets us figure out how many molecules there are per cubic meter:

N = molecules/m3 =
6× 1023 molecules

22.4 L

1 L

0.001 m3
≈ 2.7× 1025 molecules/m3 (36)

That means, on average, each molecule takes up

V = m3/molecule ≈ 1 m3

2.7× 1025 molecules
≈ 3.7× 10−26 m3/molecule (37)

If the molecules are distributed evenly, then there aught to be about 3
√
N molecules along each side

of a 1 m cube. Put another way, each one must on average occupy a little cube which is 3
√
V on a

side, giving the average spacing as

d ≈ 3
√
V ≈ 3 nm (38)

One significant figure is plenty for an analysis of this nature. Using the given density, we could arrive

at the average volume per molecule another way, using the molecular mass of nitrogen (28 g/mole):

V =

(
1.292 kg

m3

)(
1 mole

28 g

)(
1000 g

1 kg

)(
6× 1023 molecules

1 mole

)
≈ 2.7× 1025 molecules/m3 (39)

(c) We would expect quantum effects to be important when the average de Broglie wavelength

is about the same as the distance between molecules for a given density. Presuming we keep the

density fixed, this means

〈λ〉 = h√
3kBTm

∼ d (40)

=⇒ T ∼
h2

3kBmd2
≈ 0.02 K (41)

9. Refer to the video lecture by Feynman you watched. (a) In the two slit experiment, is it

possible to design an experiment which allows you to tell which slit an electron goes through

without spoiling the interference pattern? (b) A particle can proceed from point A to point B

along two indistinguishable paths. Path A has an amplitude of a, path B has an amplitude of b.

What is the overall probability for the particle to go from point A to point B?

Solution: (a) No, it is not possible to design an experiment which allows one to tell which slit the

electron went through without spoiling the interference. (b) When the paths are indistinguishable,

we must add amplitudes and then square to get the probability, so P=(a+ b)2.



10. X-ray photons of wavelength 0.154 nm are produced by a copper source. Suppose that

1.00× 1018 of these photons are absorbed by the target each second.

(a) What is the total momentum p transferred to the target each second? (b) What is the total

energy E of the photons absorbed by the target each second? (c) If the beam shines perpendicularly

onto a perfectly reflecting surface, what force does it exert on the surface? Recall F = ∆p/∆t. (d)

For these values, verify that the force on the target is related to the rate of energy transfer by

dp

dt
=

1

c

dE

dt

Solution: (a) We know each photon has a momentum of h/λ, so the net momentum transfer in

one second is the momentum per photon times the number of photons arriving in one second :

∆pnet

∆t
=
(
1.00× 1018 photons/s

)(h
λ

)
≈ 4.30× 10−6 kg ·m/s (42)

(b) The energy of each photon is E = hc/λ, so the energy in one second is just the energy per

photon times the number of photons arriving in one second:

∆Etot

∆t
=
(
1.00× 1018 photons/s

)(hc
λ

)
= c

∆pnet

∆t
≈ 1.29× 103 J/s = 1.29× 103 W (43)

(c) Since the photons are reflected, their momentum changes from p to −p, and the target must

then acquire momentum 2p per photon that hits it to conserve momentum. That means the net

force is just twice the net momentum transfer per second:

Fnet = 2
∆pnet

∆t
= 8.60× 10−6 N (44)

(d) Actually, this has been verified in part b already, but let’s do it more formally. Let N be

the number of photons striking the target, such that the rate of photons arriving is dN/dt =

1.00× 1018 s−1. This gives 1.00× 1018 photons arriving in one second as the problem specifies, we

have only assumed that they arrive at a uniform rate.

dpnet

dt
=
d

dt

(
N
h

λ

)
=
h

λ

dN

dt
(45)

dEnet

dt
=
d

dt

(
N
hc

λ

)
=
hc

λ

dN

dt
(46)

=⇒ dp

dt
=

1

c

dE

dt
(47)



We can also verify the relationship numerically,

dE/dt

dp/dt
=

1.29× 103 J/s

4.3× 10−6 kg ·m/s
= 3.00× 108 m/s = c (48)


