Problem Set 5: Mostly Wavefunctions

"I don't like it, and I'm sorry I ever had anything to do with it."

- Erwin Schrödinger about the probability interpretation of quantum mechanics

Instructions:

1. Answer all questions below. Show your work for full credit.
2. All problems are due Thurs 7 March 2013 by the end of the day.
3. You may collaborate, but everyone must turn in their own work.
4. The state of a free particle is described by the following wave function

$$
\psi(x)= \begin{cases}0 & x<-b \tag{1}\\ A & -b \leqslant x \leqslant 7 b \\ 0 & x>7 b\end{cases}
$$

(a) Determine the normalization constant A.
(b) What is the probability of finding the particle in the interval $[0, \mathrm{~b}]$?
(c) Determine $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for this state.
(d) Find the uncertainty in position $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$.
2. An electron in a helium atom is in a state described by the (normalized) wave function

$$
\begin{equation*}
\psi=\frac{4}{\sqrt{2 \pi}\left(a_{o}\right)^{3 / 2}} e^{-2 r / a_{o}} \tag{2}
\end{equation*}
$$

where a_{o} is the Bohr radius.
(a) What is the most probable value of r ?
(b) What is the energy E of the electron in this state? Hint: use Schrödinger's equation.
3. The wave function for the ground state of hydrogen $(n=1)$ is

$$
\begin{equation*}
\psi_{1}=\frac{1}{\sqrt{\pi \mathrm{a}_{\mathrm{o}}^{3}}} e^{-\mathrm{r} / \mathrm{a}_{\mathrm{o}}} \tag{3}
\end{equation*}
$$

where a_{o} is the Bohr radius.
(a) What is the most probable value of r for the ground state?
(b) What is the total probability of finding the electron at a distance greater than this radius?
4. Schrödinger's equation for a simple harmonic oscillator reads

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi=\mathrm{E} \psi \tag{4}
\end{equation*}
$$

The ground state wave function has the form

$$
\begin{equation*}
\psi_{\mathrm{o}}=a e^{-\alpha^{2} x^{2}} \tag{5}
\end{equation*}
$$

Determine the value of the constant α and the energy of the state.
5. A phenomenological expression for the potential energy of a bond as a function of spacing is given by

$$
\begin{equation*}
u(r)=\frac{A}{r^{n}}-\frac{B}{r^{m}} \tag{6}
\end{equation*}
$$

For a stable bond, $\mathrm{m}<\mathrm{n}$. Show that the molecule will break up when the atoms are pulled apart to a distance

$$
\begin{equation*}
r_{\mathrm{b}}=\left(\frac{n+1}{m+1}\right)^{1 /(n-m)} r_{\mathrm{o}} \tag{7}
\end{equation*}
$$

where r_{0} is the equilibrium spacing between the atoms. Be sure to note your criteria for breaking used to derive the above result.

