
PH 253 / LeClair Spring 2013

Problem Set 5: Solutions

Instructions:

1. Answer all questions below. Show your work for full credit.

2. All problems are due Thurs 7 March 2013 by the end of the day.

3. You may collaborate, but everyone must turn in their own work.

1. The state of a free particle is described by the following wave function

ψ(x) =


0 x < −b

A −b 6 x 6 7b

0 x > 7b

(1)

(a) Determine the normalization constant A.

(b) What is the probability of finding the particle in the interval [0,b]?

(c) Determine 〈x〉 and 〈x2〉 for this state.

(d) Find the uncertainty in position ∆x=
√
〈x2〉− 〈x〉2.

Solution: (a) Normalizing means integrating the probability density over all space and setting

the result equal to one. Since the wave function is only non-zero over the interval [−b, 7b], we need

not bother integrating over [−∞,−b] or [7b,∞].

1 =

∫
|ψ|2 dx =

7b∫
−b

A2 dx = A2x

∣∣∣∣7b
−b

= 8bA2 (2)

=⇒ A2 =
1

8b
or A =

1

2b
√

2
(3)

(b) The probability of finding the particle in [0,b] just means integrating the probability density

over that interval.

P(x ∈ [0,b]) =

b∫
0

|ψ|2 dx =

b∫
0

A2 dx = A2x

∣∣∣∣b
0

= bA2 =
1

8
(4)

This makes a lot of sense: the interval the wave function is confined over [−b, 7b] has width 8b,

and the odds of finding the particle in any particular slice of width b should just be 1/8 given the

wave function is constant.

(c) In order to find 〈x〉 and 〈x2〉, we integrate xP(x) and x2P(x) over all space, which again means

over [−b, 7b] since ψ is zero elsewhere:



〈x〉 =
7b∫
−b

xA2 dx = A2 · 1

2
x2
∣∣∣∣7b
−b

=
1

2
A2
(
49b2 − b2

)
= 24b2A2 = 3b (5)

〈x2〉 =
7b∫
−b

x2A2 dx =
1

3
A2x3|7b−b =

1

3
· 1

8b
·
(
343b3 + b3

)
=

43

3
b2 (6)

Again, this is sensible: the particle is found, on average, in the center of the interval [−b, 7b] right at

x=3b. Note that the standard deviation 〈x2〉 is much larger than the interval itself (∼14b compared

to 8b), so the particle is not well localized at all. In fact, once we calculate the uncertainty . . .

(d) The uncertainty in position is found in the usual way:

∆x =
√
〈x2〉− 〈x〉 =

√
43

3
b2 − 9b2 = b

√
16

3
=

4b√
3
≈ 2.3b (7)

If we were to measure the position of the particle, we would expect to get 〈x〉±∆x≈3b±2.3b most

of the time (68% of the time if the uncertainty is random). The bounds on 〈x〉 are so large that all

we can say with confidence is that the particle is somewhere within the region [−b, 7b].

2. An electron in a helium atom is in a state described by the (normalized) wave function

ψ =
4

√
2π (ao)

3/2
e−2r/ao (8)

where ao is the Bohr radius.

What is the most probable value of r?

Solution: The most probable value of r would be the radius at which the probability distribution

P(r) is maximum. Thus, we just need to find P(r), calculate dP/dr and set it equal to zero, and

we’re done.

P(r)dr = |ψ|2 dV = |ψ|2 4πr2 dr or P(r) = 4πr2|ψ|2 (9)

P(r) = 4πr2
(

8

πa3o
e−4r/ao

)
=

32r2

a3o
e−4r/ao (10)

Now the derivative:



dP

dr
=

32

a3o

(
2re−4r/ao −

4r2

ao
e−4r/ao

)
= 0 (11)

=⇒ 0 = 2r−
4r2

ao
=⇒ 4r2 = 2rao =⇒ r =

1

2
ao (12)

(13)

A quick plot of P(r) verifies that this is a maximum rather than a minimum. We have ignored the

trivial solutions of r=0 and r→∞.

3. The wave function for the ground state of hydrogen (n=1) is

ψ1 =
1√
πa3o

e−r/ao (14)

where ao is the Bohr radius.

(a) What is the most probable value of r for the ground state?

(b) What is the total probability of finding the electron at a distance greater than this radius?

Solution: (a) Just like the last problem.

P(r) = 4πr2|ψ|2 =
4r2

a3o
e−2r/ao (15)

dP

dr
=

4

a3o
e−2r/ao

(
2r−

2r2

ao

)
(16)

=⇒ r = ao (17)

Again, a quick plot shows r=ao is a maximum in the probability distribution, so ao is the most

probable radius. We have again ignored the trivial solutions of r=0 and r→∞.

(b) The odds of the electron being at a distance larger than this is found by integrating P(r)dV

from ao outward to ∞.

P(r > ao) =

∞∫
ao

|ψ|2 · 4πr2 dr =
∞∫
ao

4r2

a3o
e−2r/ao dr (18)

The substitution u=2r/ao, du=2dr/ao makes this into a known integral. The limits then become

2 and ∞



P(r > ao) =

∞∫
2

u2

ao
e−u

ao

2
du =

1

2

∞∫
2

u2e−u du =
1

2

(
−e−u

) (
u2 + 2u+ 2

)∣∣∣∣∞
2

(19)

=
1

2
e−2 (10) =

5

e2
≈ 0.677 (20)

The probability distribution is rather asymmetric - there is approximately a 2 in 3 chance of finding

the particle farther from the nucleus than the most probable radius.

4. Schrödinger’s equation for a simple harmonic oscillator reads

−
 h2

2m

∂2ψ

∂x2
+

1

2
mω2x2ψ = Eψ (21)

The ground state wave function has the form

ψo = ae−α
2x2 (22)

Determine the value of the constant α and the energy of the state.

Solution: Nothing to do but plug in ψ and grind through it. First we can normalize ψ since it is

easy:

1 =

∞∫
−∞

|ψ|2 dx = a2
∞∫

−∞
e−α

2x2 dx =

√
π

|α|
a2 =⇒ α2 = πa4 (23)

This doesn’t help much, but we can at least relate α and a. Next find the derivatives of ψ.

∂ψ

∂x
= −2α2xae−α

2x2 (24)

∂2ψ

∂x2
= −2α2ae−α

2x2 + 4α4x2ae−α
2x2 (25)

= ae−α
2x2
(
4α4x2 − 2α2

)
=
(
4α4x2 − 2α2

)
ψ (26)

Now the Schrödinger equation:

Eψ = −
 h2

2m

∂2ψ

∂x2
+

1

2
mω2x2ψ = −

 h2

2m

(
4α4x2 − 2α2

)
ψ+

1

2
mω2x2ψ (27)

Now we notice that all terms have a factor ψ, which we can cancel out, and all terms have either

a constant or an x2 in front of them. The x2 and constant terms can’t equal one another, so we



separately equate them. First the constant terms:

 h2α2

m
= E (28)

Now the x2 terms:

2α4 h2

m
=

1

2
mω2 (29)

α4 =
1

4

m2ω2

 h2
(30)

Combining, we can put E and α in terms of fundamental constants and ω.

E =
 h2

m

√
m2ω2

4 h2
=

 hmω

2m
=

1

2
 hω (31)

α =
4

√
m2ω2

4 h2
=

√
mω

2 h
(32)

a =

√
α
√
π = 4

√
πmω

2 h
(33)

5. A phenomenological expression for the potential energy of a bond as a function of spacing is

given by

U(r) =
A

rn
−
B

rm
(34)

For a stable bond, m<n. Show that the molecule will break up when the atoms are pulled apart

to a distance

rb =

(
n+ 1

m+ 1

)1/(n−m)

ro (35)

where ro is the equilibrium spacing between the atoms. Be sure to note your criteria for breaking

used to derive the above result.

Solution: The potential U(r) has an associated force, the molecule’s restoring force:

F(r) = −
dU

dr
(36)

The molecule will break when its maximum restoring force is reached, when dF/dr=−d2U/dr2=0.

Equilibrium is when F=−dU/dr=0. At the equilibrium spacing ro, the force is zero, or equivalently,

the potential is at a minimum.



F(ro) = −
dU

dr

∣∣∣∣
ro

=
nA

rn+1
o

−
mB

rm+1
o

= 0 (37)

nA

mB
=
rn+1
o

rm+1
o

= rn−mo (38)

ro =

(
nA

mB

) 1
n−m

(39)

Is this really a minimum for U? We can check with the second derivative test: if d2U/dr2 =

−dF/dr>0 at ro, have a maximum. We will need dF/dr shortly anyway. You didn’t really need to

do this on your homework, but it is instructive:

−
dF

dr
=
d2U

dr2
=
n (n+ 1)A

rn+2
−
m (m+ 1)B

rm+2
(40)

d2U

dr2

∣∣∣∣
ro

= n (n+ 1)A

(
mB

nA

) n+2
n−m

−m (m+ 1)B

(
mB

nA

)m+2
n−m

(41)

=

(
mB

nA

)2 [
n (n+ 1)A

(
mB

nA

) n
n−m

−m (m+ 1)B

(
mB

nA

) m
n−m

]
(42)

=

(
mB

nA

)2(
mB

nA

) n
n−m

[
n (n+ 1)A−m (m+ 1)B

(
mB

nA

)m−n
n−m

]
(43)

=

(
mB

nA

)2(
mB

nA

) n
n−m

[
n (n+ 1)A−m (m+ 1)B

(
nA

mB

)]
(44)

=

(
mB

nA

) n+2
n−m

[
n (n+ 1)A− n (m+ 1)A

]
(45)

= nA

(
mB

nA

) n+2
n−m

[
n−m

]
> 0 (46)

Clearly, the only way this expression will be positive is if n>m, which means stable bonds have

n>m. This means that the repulsive force has a higher index than the attractive force, and it is

of shorter range.

What about breaking the molecule? For distances smaller than ro, the force is repulsive, while for

distances greater than ro it is attractive – in either case, it serves to try and restore the equilibrium

position. However, the competition between the shorter-range repulsive force and longer-range at-

tractive force means that there is a critical distortion of the molecule for r>ro at which the force

is maximum, and any stronger force (or larger displacement) will separate the constituents to an

arbitrarily large distance – the molecule will be broken.



We have the force between the molecular constituents above:

F(r) =
nA

rn+1
−
mB

rm+1
(47)

so we can readily calculate the maximum force with which the bond may try to restore its equilib-

rium. The force above is the force with which the molecule will respond if we push or pull on it.

The maximum force will occur when dF/dr=0, at a radius rb

dF

dr

∣∣∣∣
rb

=
n(n+ 1)A

rn+2
b

−
m(m+ 1)B

rm+2
b

= 0 (48)

n(n+ 1)A

m(m+ 1)B
=
rn+2
b

rm+2
b

= rn−mb (49)

rb =

(
n(n+ 1)

m(m+ 1)B

) 1
n−m

=

(
nA

mB

) 1
n−m

(
n+ 1

m+ 1

) 1
n−m

(50)

Now, how do we know this is the maximum force, and not a minimum force? We grind through

another derivative . . . we must have d2F/dr2>0 for a maximum:

d2F

dr2
=
n (n+ 1) (n+ 2)A

rn+3
−
m (m+ 1) (m+ 2)B

rm+3
= rn+3

[
n (n+ 1) (n+ 2)A−

m (m+ 1) (m+ 2)B

rm−n

]
d2F

dr2

∣∣∣∣
rb

= rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (m+ 1) (m+ 2)Brn−mo

(
n+ 1

m+ 1

)n−m
n−m

]

= rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (n+ 1) (m+ 2)Brn−mo

]
(51)

= rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (n+ 1) (m+ 2)B

(
nA

mB

)]
(52)

= rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A− n (n+ 1) (m+ 2)A

]
(53)

= An (n+ 1) rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n−m

]
> 0 (54)

For the second to last line, we noted that rn−mo = nA/mB. Once again, if n > m, the second

derivative is positive, and thus the force is maximum at rb. Applying a force sufficiently strong to

stretch the bond to a separation rb will serve to break it. Incidentally, the maximum force required

is



F(rb) =
nA

rn+1
o

(
n+ 1

m+ 1

) n+1
m−n

−
mB

rm+1
o

(
n+ 1

m+ 1

)m+1
m−n

=

(
n+ 1

m+ 1

) n+1
m−n

[
nA

rn+1
o

−
mB

rm+1
o

(
n+ 1

m+ 1

)]
=

(
n+ 1

m+ 1

) n+1
m−n

[
nA

(
nA

mB

) n+1
m−n

−mB

(
nA

mB

)m+1
m−n

(
n+ 1

m+ 1

)]
(55)

=

(
n+ 1

m+ 1

) n+1
m−n

(
nA

mB

) n+1
m−n

[
nA− nA

(
n+ 1

m+ 1

)]
(56)

= nA

(
n+ 1

m+ 1

) n+1
m−n

(
nA

mB

) n+1
m−n

(
m− n

m+ 1

)
=
nA

rn+1
b

(
m− n

m+ 1

)
(57)


