
PH 253 / LeClair Spring 2013

Problem Set 6: solutions

1. Explain why each of the following sets of quantum numbers (n, l,ml,ms) is not permitted for

hydrogen:

(2, 2,−1,+
1

2
)

(3, 1,+2,−
1

2
)

(4, 1,+1,−
3

2
)

(2,−1,+1,+
1

2
)

Solution: Let’s look at them one by one:

(2, 2,−1,+
1

2
) (1)

From this we gather n= 2, which means that l is restricted to the set {0, 1}. Since this set claims

l=2, it is clearly invalid.

(3, 1,+2,−
1

2
) (2)

Here we have n=2 and l=1. This restricts ml to the set {−1, 0, 1}, so the listed value of ml=+2

is invalid.

(4, 1,+1,−
3

2
) (3)

We need only look at the value of ms. The electron spin quantum number can be only +1
2 or −1

2 ,

not −3
2 .

(2,−1,+1,+
1

2
) (4)

Here we have n= 2. The value of l is restricted to zero positive integers less than n, so the claim

of l=−1 makes this set invalid.

2. List the excited states (in spectroscopic notation) to which the 4p state can make downward

transitions.



Solution: Ignoring spin, the relevant selection rule is ∆l = ±1. For the 4p state, l = 1, so we

can move to states that are lower in energy (such that we have a downward transition) that have

l= {0, 1}, i.e., s and d states. Given n=4, we are left with transitions to 3d, 3s, 2s, and 1s.

In our simplest model of the hydrogen atom, the 4s state would have the same energy as the 4p

state, and no transition is possible. However, you now know that spin-orbit coupling makes the

4s state slightly lower in energy than the 4p state, so a downward transition 4p → 4s is also in

principle possible. In this case we would have to worry about spin conservation and whether the

transition requires a spin fill, and it becomes a bit complicated. Let’s just say it is unlikely. (No

points off if you missed this one, since it is a subtlety.)

3. Splitting of Hydrogen lines. The electron’s intrinsic magnetic moment ~µs and intrinsic spin

angular momentum ~S are proportional to each other; their relationship can be written as

~µs = −gs
e

2m
~S = −gsµb

~S
 h

(5)

with gs≈2. The energy of the electron in a effective magnetic field ~B is E=−~µs · ~B.

In hydrogen, transitions occur between two spin-orbit-split 2p states and a single 1s state, leading to

two emission lines. If the emission wavelength in the absence of spin-orbit coupling is 656.47 nm, and

the spin-orbit splitting is 0.016 nm, estimate the strength of the effective magnetic field produced

by the electron’s orbital motion (i.e., the effective field due to the spin-orbit interaction) which

results in this wavelength difference.

Solution: We can make use of the result below to relate the energy and wavelength differences,

viz.:

∣∣∆λ∣∣ = ∣∣∣∣dλdE
∣∣∣∣∆E =

hc

E2
∆E =

λ2

hc
∆E (6)

Given a wavelength difference, we can find the energy difference. In a magnetic field, electrons take

on two different energy states depending on whether their spins are parallel or antiparallel to the

field, with their difference in energy being 2µsB. Given gs=2, µs=µB, and the energy difference

in a magnetic field is ∆E=2µBB. Thus,

∆E = 2µbB =
hc∆λ

λ2
(7)

Solving for B, and using the numbers given,

B =
hc∆λ

2µBλ2
≈ 0.4 T (8)



4. Multiplicity of atomic magnetic moments. Calculate the magnetic moments that are possible

for the n= 4 level of Hydrogen, making use of the quantization of angular momentum. You may

neglect the existence of spin. Compare this with the Bohr prediction for n=4.

Solution: If n=4, then we have possible values for l of l= {0, 1, 2, 3}. This gives us the magnetic

moments possible:

µ = −µB
√
l(l+ 1) (9)

µ = {0,
√

2,
√

6, 2
√

3}µB (10)

By comparison, the Bohr model would predict for level n a magnetic moment of nµB, or 4µB in

this case.

5. Transitions in a magnetic field. Transitions occur in an atom between l= 2 and l= 1 states

in a magnetic field of 2.0 T, obeying the selection rules ∆ml=0,±1. If the wavelength before the

field was turned on was 680.0 nm, determine the wavelengths that are observed. You may find the

following relationship useful:

∣∣∆λ∣∣ = ∣∣∣∣dλdE
∣∣∣∣∆E =

hc

E2
∆E =

λ2

hc
∆E (11)

Recall that the Zeeman effect changes the energy of a single-electron atom in a magnetic field by

∆E = ml

(
e h

2me

)
B with ml = −l,−(l− 1), . . . , 0, . . . , l− 1, l (12)

For convenience, note that e h/2me=µB≈57.9µ eV/T, and neglect the existence of spin.

Solution: In a magnetic field B, the energy levels for a given l state will split according to their

value ofml. If the original energy of the level is El, then the original level will be split symmetrically

into 2l+ 1 sub-levels, with adjacent levels shifted by µBB:

El,ml
= El +mlµBB (13)

This is shown schematically below for l=2 and l=1 levels. The l=2 level has possible ml values

of ml= {−2,−1, 0, 1, 2}, and thus in a magnetic field B what was a single level is now 5 individual

levels. For l=1, we have ml values of only ml= {−1, 0, 1}, and the original level becomes a triplet

upon applying a magnetic field.

Before calculating anything, we can apply the dipole selection rules, which states that ml can
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Figure 1: Allowed transitions from l=2 to l=1 with a magnetic field applied.

change by only 0,±1. This means that, for example, from the l= 2, ml= 1 level an electron may

“jump” to the any of the l= 1, ml = {2, 1, 0} levels. On the other hand, from l= 2, ml = 2 level

an electron may only jump to the l=1, ml=1 level. Following these rules, we see from the figure

above that there are only 9 possible transitions allowed. Further, noting that the levels are equally

spaced, we have in fact only three different transition energies.

The spacing between the levels ∆Eo is the Zeeman energy given above, ∆Eo = µBB. From our

schematic above, it is clear that the only possible transition energies in a magnetic field are the

original transition energy (no change in ml), or the original transition energy plus or minus ∆Eo

(ml changes by ±1). The original transition energy Eo is readily found from the given wavelength

λ=500 nm:

Eo =
hc

λ
≈ 1.82 eV (14)

Thus, the new transition energies must be

Eo 7−→ {Eo − ∆Eo,Eo,Eo + ∆Eo} = {Eo − µBB,Eo,Eo + µBB} (15)

That is, the original transition energy plus two new ones. We can easily convert these two new

energies into two new wavelengths by the energy-wavelength relationship E=hc/λ. However, this

does require some numerical precision (i.e., carrying at least 7-8 digits in your calculations, and

knowing the requisite constants to commensurate precision), and it is somewhat easier to simply

calculate the change in energy by itself. Since we know the energy changes by ±∆Eo, using the

formula given we have

∣∣∆λ∣∣ = λ2∆Eo

hc
=
λ2µBB

hc
≈ 0.043 nm (16)



The shift in energy of ∆Eo implies a shift in wavelength of ∆λ ≈ 0.043 nm, meaning the new

transitions must be at the original wavelength λ plus or minus ∆λ:

λ 7−→ {λ− ∆λ, λ, λ+ ∆λ} = {679.957, 680.000, 680.043} nm (17)

6. By considering the visible spectrum of hydrogen and He+, show how you could determine

spectroscopically if a sample of hydrogen was contaminated with helium. (Hint: look for differences

in the visible emission lines, λ≈390∼750 nm. A difference of 10 nm is easily measured.)

Solution: We know the energies in a hydrogen atom are just En=(−13.6 eV) /n2 for a given level

n. For the He+ ion, the only real difference is the extra positive charge in the nucleus. If we have

Z positive charges in the nucleus, the energies become En =(−13.6 eV)Z2/n2. For Z= 2, we just

end up multiplying all the energies by a factor 4. The questions are: does this lead to any new

radiative transitions, are they in the visible range, and are they well-separated enough? We can

just list the energy levels for the two systems and see what we come up with.

We already know that the visible transitions in Hydrogen occur when excited states relax to the

n=2 level. Thus, we can probably find a new transition for He+ by just considering the first few

higher levels above n=2. We only need one new spectral line to be able to find He+, so we may as

well just consider a few transitions at first and see if we get lucky.

H He+

n En (eV) En (eV)

1 −13.6 −13.6 · 4
2 −13.6 · 14 −13.6
3 −13.6 · 19 −13.6 · 49
4 −13.6 · 1

16 −13.6 · 14
5 −13.6 · 1

25 −13.6 · 4
25

We see a couple of things already. The n = 2 state for He+ happens to accidentally have the

same energy as the n= 1 state for H, likewise for the n= 4 state for He+ and the n= 2 state for

H. That means that we can’t just pick transitions at random, some of them will accidentally have

the same energy. In particular, the even numbers will always match up with an existing H transition.

However, the n = 3 state for He+ has the curious fraction 4/9 in it, which can’t possibly occur

for H. Transitions into the n = 3 state should yield unique energies. Let’s compute the visible

transitions in hydrogen H, since there are only a few, and see if some He+ transitions stick out in

the in-between wavelengths:

Already with just the 4 → 3 transition in He+, we have an expected emission (or absorption) at

469 nm, a full 17 nm from the nearest H line, and well in the visible range to boot (a nice pretty



H transition λH (nm) He+ transition λHe+ (nm)

3→ 2 656 4→ 3 469
4→ 2 486 3→ 2 164
5→ 2 434
6→ 2 410

blue). Should be easy to pick out!


