
PH 253 / LeClair Spring 2013

Problem Set 7: Solutions

1. Variational Principle I. The energy of a system with wave function ψ is given by

E[ψ] =

∫
ψ∗HψdV∫
|ψ|2 dV

(1)

where H is the energy operator. The variational principle is a method by which we guess a trial form for

the wave function ψ, with adjustable parameters, and minimize the resulting energy with respect to the

adjustable parameters. This essentially chooses a “best fit” wave function based on our guess. Since the

energy of the system with the correct wave function will always be minimum, our guess will always lead to

an energy which is slightly too high, but the variational principle allows us to get as close as possible to the

correct energy with our trial wave function.

Pretend we don’t know the ground state wave function for hydrogen, but decided to guess the following form

for ψ:

ψ(r) =
β

α2 + r2
(2)

(a) Use the variational principle and normalization to find the values of α and β that give the minimum

energy for this trial wave function. Note that since the trial function is spherically symmetric, dV=4πr2 dr

and ∇2ψ= 1
r2
∂
∂r

(
r2 ∂ψ
∂r

)
.

(b) Compare this result to the correct ground state energy of hydrogen and sketch/plot your best guess for

ψ with the correct ground state wave function.

Solution: Let there be no confusion: this variational stuff is messy. Highly effective, but messy. Let’s get

started.

First, let us compute Hψ.

Hψ = −
 h2

2m

1

r2
∂

∂r

(
r2
∂

∂r
ψ

)
−
ke2

r
ψ = −

 h2

2mr2
∂

∂r

(
r2
∂

∂r

β

α2 + r2

)
−
ke2

r

β

α2 + r2
(3)

= −
 h2

2mr2
∂

∂r

(
r2

−2rβ

(α2 + r2)2

)
−
ke2

r

β

α2 + r2
= −

 h2

2mr2
∂

∂r

(
−2r3β

(α2 + r2)2

)
−
ke2

r

β

α2 + r2
(4)

= −
 h2

2mr2

(
8r4β

(α2 + r2)3
−

6r2β

(α2 + r2)2

)
−
ke2

r

β

α2 + r2
(5)

= −
 h2

2m

(
8r2β− 6βα2 − 6β2

(α2 + r2)3

)
−
ke2

r

β

α2 + r2
= −

 h2

2m

(
2r2β− 6βα2

(α2 + r2)3

)
−
ke2

r

β

α2 + r2
(6)

Yes, that was just terrible. Now we multiply through by ψ again to get ψHψ. Since ψ(x) is real for all x,

we need not worry about complex conjugates and such.

ψHψ = −
 h2β

2m

(
2βr2 − 6βα2

(α2 + r2)4

)
−

ke2β2

r (α2 + r2)2
(7)



Now we integrate that over all space, using the volume element 4πr2 dr with r ranging from 0 to ∞. In this

process, we either remember some obscure integrals or use Wolfram Alpha (http://wolframalpha.com).

∫
ψHψ =

∞∫
0

−
4π h2β2

2m

(
2r4 − 6α2r2

(α2 + r2)4

)
−

4πke2β2r

(α2 + r2)2
(8)

= −
4π h2β2

m

(
2
π

32α3
− 6α2 π

32α5

)
− 4πke2β2 1

2α2
(9)

= −
4π2 h2β2

2m

(
1

16α2
−

3

16α2

)
−

2πke2β2

α2
=
π2 h2β2

4mα3
−

2ke2β2

α2
(10)

Now the denominator in our energy expression:

∫
|ψ|2 dV =

∞∫
0

4πβ2r2

(α2 + r2)2
dr = 4πβ2 π

4α
=
π2β2

α
(11)

This implies that for the wave function to be normalized, such that
∫
|ψ|2 dV = 1, we require β2 = α/π2.

Putting it all together, we can find our expression for energy:

E =
α

π2β2

(
π2 h2β2

4mα3
−

2πke2β2

α2

)
=

 h2

4mα2
−

2ke2

πα
(12)

Note that the energy is independent of β, which makes some sense - β is just the normalization constant.

Our variational condition is that this energy is minimized with respect to the parameter α, thus

0 =
∂E

∂α
= 2

2 h2

4mα3
=

2ke2

πα2
(13)

 h2

2mα3
=

2ke2

πα2
(14)

α =
π h2

4mke2
=
π

4
ao (15)

Here ao is the Bohr radius, ao =  h2/kme2. Thus, we can interpret α as a characteristic distance of the

electron cloud, about 20% smaller than the exact solution gives us. Plugging this in our energy equation,

we have

E = −
−4 h2

π2ma2o
≈ −11.1 eV (16)

This is about 19% off of the exact value for the ground state energy. The plots of ψ for the variational and

correct ground state wavefunctions are left as an exercise for the reader . . .

Finally, here are couple of useful tutorials you may have already come across:

http://galileo.phys.virginia.edu/classes/752.mf1i.spring03/Variational_Methods.htm http://

www.colorado.edu/physics/phys7440/phys7440_sp03/HOMEWORK/Homework/S2.htm

http://wolframalpha.com
http://galileo.phys.virginia.edu/classes/752.mf1i.spring03/Variational_Methods.htm
http://www.colorado.edu/physics/phys7440/phys7440_sp03/HOMEWORK/Homework/S2.htm
http://www.colorado.edu/physics/phys7440/phys7440_sp03/HOMEWORK/Homework/S2.htm


2. Variational Principle II. The energy operator for a simple harmonic oscillator in one dimension is

H = −
 h2

2m

d2

dx2
+

1

2
mω2x2 (17)

Presume we don’t know the proper wave function, but guessed a wave function of the form

ψ(r) =
β

α2 + x2
(18)

(a) Use the variational principle and normalization to find the values of α and β that give the minimum

energy for this trial wave function. Since this is a one dimensional problem, take dV=dx.

(b) Compare this result to the correct ground state energy of the simple harmonic oscillator and sketch/plot

your best guess for ψ with the correct ground state wave function.

Solution: Much like the last one, except here dV =dx and x runs from −∞ to ∞, which changes all the

integrals.

Hψ = −
 h2

2m

(
d

dx

β

α2 + x2

)
+

1

2
mω2x2

β

α2 + x2
(19)

= −
 h2

2m

(
−2β

(α2 + x2)2
+

8x2β

(α2 + x2)3

)
+

1

2

mωxβx2

α2 + x2
(20)

= −
 h2β

2m

(
3x2 − α2

(α2 + x2)3

)
+

1

2

mωxβx2

α2 + x2
(21)

Now HψH:

ψHψ = −
 h2β2

m

(
3x2 − α2

(α2 + x2)4

)
+

1

2

mω2β2x2

(α2 + x2)2
(22)

And, the full numerator:∫
ψHψdx =

∫
−∞

 h2β2

m

(
α2 − 3x2

(α2 + x2)4

)
+

1

2

mωxβ2x2

(α2 + x2)2
=

 h2β2

2m

(
5π

16α5
−

3π

16α5

)
+
mω2β2

2

π

2α
(23)

=
πβ2 h2

8mα5
+
πmβ2ω2

4α
(24)

And the denominator:

∫
|ψ|2 dx =

∞∫
−∞

β2

(α2 + x2)2
dx =

πβ2

2α3
(25)

This implies that for a normalized wavefunction we require β2=2α3/π. Now the energy expression in full:

E =
2α3

πβ2

(
πβ2 h2

8mα5
+
πmβ2ω2

4α

)
=

 h2

4mα2
+
α2mω2

2
(26)

Once again, the energy is independent of β as it should be, and the optimal solution is when dE/dα=0.



dE

dα
= 0 = −

2 h2

4mα3
+mαω2 =⇒ α2 =

 h√
2mw

(27)

The minimum energy for this guess at the wavefunction is then

E =
 h2

4m

√
2mω
 h

+
mω2

2

 h√
2mω

=

√
2

2
 hω =

1

2
 hω

(√
2
)

(28)

Our variational approach with a plausible guess at the wavefunction yields a ground state energy that is a

factor
√

2≈1.4 times higher than the exact value. Not bad for a guess.

3. Two positive and two negative charges are arranged on a square lattice of side a in two different ways,

shown below. Calculate the electrostatic potential energy of each configuration. Which configuration of

charges is more stable? Why?

+q

-q

+q

-q

+q

-q

-q

+q

(a) (b)

a
a

a
a a

a

a
a

Solution: This is problem is straight from intro physics. Using the principle of superposition, we know

that the potential energy of a system of charges is just the sum of the potential energies for all the unique

pairs of charges. The problem is then reduced to figuring out how many different possible pairings of charges

there are, and what the energy of each pairing is. The potential energy for a single pair of charges, both of

magnitude q, separated by a distance d is just:

PEpair =
keq

2

a

We need figure out how many pairs there are, and for each pair, how far apart the charges are. Once we’ve

done that, we need to figure out the two different arrangements of charges and run the numbers.

In this case, there are not many possibilities. Label the upper left charge in each diagram “1” and number

the rest clockwise. The possible pairings are then only

q1q2,q1q3,q1q4

q2q3,q2q4

q3q4

Since there are the same number of possibilities for either crystal, the total potential energy in either case is

just adding all of these pairs’ contributions together. Except for pairs q2q4 and q1q3, which are separated



by a distance a
√

2, all others are separated by a distance a. Thus,

PE =
keq1q2

a
+
keq1q3

a
√

2
+
keq1q4

a
+
keq2q3

a
+
keq2q4

a
√

2
+
keq3q4

a
(29)

First, consider configuration (a). All we need to do now is plug in +q for q1 and q2, and −q for q3 and q4:

PEa =
keq

2

a
+
ke
(
−q2

)
a
√

2
+
ke
(
−q2

)
a

+
ke
(
−q2

)
a

+
ke
(
−q2

)
a
√

2
+
keq

2

a
(30)

=
keq

2

a

(
−

2√
2

)
= −
√

2
keq

2

a
≈ −1.414

keq
2

a
(31)

For configuration (b), we need +q for q1 and q3, and −q for q2 and q4:

PE =
ke
(
−q2

)
a

+
keq

2

a
√

2
+
ke
(
−q2

)
a

+
ke
(
−q2

)
a

+
keq

2

a
√

2
+
ke
(
−q2

)
a

(32)

=
keq

2

a

(
−4 +

2√
2

)
=
keq

2

a

(
−4 +

√
2
)
≈ −2.586

keq
2

a
(33)

Configuration (b) has a lower potential energy, and is therefore more stable. Qualitatively, this makes sense:

configuration (b) keeps the like charges as far away as possible, which also maximizes the number of favorable

opposite pairings at close distance.

4. Energetics of diatomic systems An approximate expression for the potential energy of two ions as a

function of their separation is

PE = −
ke2

r
+
b

r9
(34)

The first term is the usual Coulomb interaction, while the second term is introduced to account for the

repulsive effect of the two ions at small distances. (a) Find b as a function of the equilibrium spacing ro.

(b) For KCl, with an equilibrium spacing of ro=0.279 nm, calculate the frequency of small oscillations about

r= ro. Hint: do a Taylor expansion of the potential energy to make it look like a harmonic oscillator for

small r=ro.

Solution: The equilibrium spacing will be characterized by the net force between the ions being zero, or

equivalently, the potential energy being zero:

F(ro) = −
dU

dr

∣∣∣∣
r=ro

= 0 =
ke2

r2o
−

9b

r10o
(35)

ke2r8o = 9b (36)

b =
1

9
ke2r8o (37)

Substituting this result back into our potential energy expression, we can find the potential energy at

equilibrium, how much energy is gained by the system of ions condensing into a crystal. First, the potential



energy as a function of spacing:

PE = U(r) = −
ke2

r
+
ke2r8o
9r9

(38)

Evaluating at equilibrium, ro=0.279 nm,

U(ro) = −
ke2

ro
+
ke2

9ro
= −

8ke2

9ro
≈ −4.59 eV (39)

The frequency of small oscillations can be found by Taylor expanding the potential about equilibrium for

small displacements from equilibrium:

U(r− ro) ≈ U(ro) +U′(ro) (r− ro) +
1

2
U′′(ro) (r− ro)

2 (40)

The first term in the expansion is just the potential energy at equilibrium which we found above. The second

term, linear in displacement, must vanish at equilibrium (which is exactly the condition we enforced to find

b, after all). The third term is quadratic in displacement, just as it would be for a simple harmonic oscillator,

U= 1
2k (r− ro)

2. Thus, the coefficient of the quadratic term must be 1
2k, which means the frequency of small

oscillations is ω=
√
k/µ, where µ is the reduced mass of the system (see the last problem for a derivation).

That is, the diatomic molecule looks like two masses coupled by a spring.

1

2
k =

1

2
U′′(ro) (41)

k = U′′(ro) = −
2ke2

r3o

90b

r11o
=

8ke2

r3o
≈ 84.9 N/m (42)

ω =

√
k

µ
= 2πf (43)

The reduced mass of the molecule in terms of the K and Cl atomic masses is

µ =
mKmCl

mK +mCl
≈ 3.09× 10−26 kg (44)

which gives the frequency of oscillation f as

f =
1

2π

√
k

µ
≈ 8.35× 1012 Hz ≈ 278 cm−1 (45)

The accepted valuei is 281 cm−1, in excellent agreement with our simple model.

5. (a) A diatomic molecule has only one mode of vibration, and we may treat it as a pair of masses con-

nected by a spring (figure (a) below). Find the vibrational frequency, assuming that the masses of A and B

are different. Call them ma and mb, and let the spring have constant k.

iNIST, see http://cccbdb.nist.gov/compvibs3.asp?casno=7447407&charge=0&method=14&basis=9

http://cccbdb.nist.gov/compvibs3.asp?casno=7447407&charge=0&method=14&basis=9


(b) A diatomic molecule adsorbed on a solid surface (figure (b) below) has more possible modes of vibration.

Presuming the two springs and masses to be equivalent this time, find their frequencies.

Figure 1: From http: // prb. aps. org/ abstract/ PRB/ v19/ i10/ p5355_ 1 .

Solution: Just because we can, we will solve the more general problem of three different springs shown

below (k1, k2, and k3 from left to right) and two different masses m1 and m2. Though it requires a bit more

algebra, it solves both of our problems posed and several others. By setting k1=k3=0 we solve problem (a),

and setting k3= 0 we solve problem (b). By setting k1=k2=k3 we solve the simplest case of two coupled

oscillators, a problem you will no doubt encounter again. So, for the purposes of illustration, we will drag

this problem out in quite some detail.

Figure 2: From http: // en. wikipedia. org/ wiki/ Normal_ mode .

Let mass m1 be displaced from equilibrium by an amount x1 and mass m2 by an amount x2, with positive

x running to the right.ii Mass m1 is connected to springs k1 and k2. Spring k1 is compressed (or elongated)

only by mass m1 due to its displacement x1, and it reacts with a force −k1x1 on mass m1. Similarly, spring

3 is compressed only by mass 2, so it reacts with a force −k3x2 on mass m2. Spring 2 is connected to both

masses m1 and m2, and its net change in length from equilibrium is the difference between the displacements

of masses m1 and m2, x2−x1. If both masses move in the same direction by the same amount, the net change

in length is zero, whereas if both masses move in opposite directions in the same amount, the net change in

length is twice as much. Spring 2 thus pushes back on both masses m1 and m2 with a force k2(x2−x1).

Putting all this together, we can write the net force on masses m1 and m2, making note of the fact that for

mass m1 the force from k1 is opposite in direction to that of k2, and similarly for the forces from k3 and k2

on mass m2.

F1 = m1
d2x1

dt2
= −k1x1 + k2 (x2 − x1) (46)

F2 = m2
d2x2

dt2
= −k3x2 + k2 (x1 − x2) (47)

iiIt makes no difference which direction we call +x, so long as we are consistent.

http://prb.aps.org/abstract/PRB/v19/i10/p5355_1
http://en.wikipedia.org/wiki/Normal_mode


Now, what are the possible modes of oscillation? First, we seek only steady-state solutions. Since we have

not included any damping, that means ones that involve both masses oscillating freely in a sinusoidal fashion.

The symmetry of the problem dictates that only two modes should be possible: a symmetric one where both

masses move in the same direction, and an antisymmetric one where the masses move in opposite directions.

In the symmetric mode, in the limiting case that k1 =k3 and m1 =m2, we would have the masses moving

in unison and the central spring k2 would remain at its equilibrium length (and in this case the frequency

should not depend on k2). In the antisymmetric mode, a higher frequency vibration occurs where the masses

move toward and away from each other. In any case: if we seek steady-state sinusoidal solutions, symmetric

or antisymmetric, there is a single frequency governing each mode, and we may choose

x1 = A1e
iωt (48)

x2 = A2e
iωt (49)

Plugging this trial solution into our equations of motion above,

−m1ω
2A1e

iωt = −k1A1e
iωt + k2 (A2 −A1) e

iωt (50)

−m2ω
2A2e

iωt = −k3A2e
iωt + k2 (A1 −A2) e

iωt (51)

Simplifying, and canceling the common factor of eiωt

−m1ω
2A1 = −k1A1 + k2 (A2 −A1) (52)

−m2ω
2A2 = −k3A2 + k2 (A1 −A2) (53)

We may write this as a system of two equations in terms of the two unknown amplitudes A1 and A2:

(
m1ω

2 − k1 − k2
)
A1 + k2A2 = 0k2A1 +

(
m2ω

2 − k3 − k2
)
A2 = 0 (54)

Of course, we do not really wish to find the amplitudes, we wish to find ω. We may find ω by investigating

the conditions under which a solution to the above equations exists. First, we write the equation above in

matrix form:[(
m1ω

2 − k1 − k2
)

k2

k2
(
m2ω

2 − k3 − k2
)] [A1

A2

]
=

[
0

0

]
(55)

This system of equations has a solution only if the matrix of coefficients has a determinant of zero:∣∣∣∣∣
(
m1ω

2 − k1 − k2
)

k2

k2
(
m2ω

2 − k3 − k2
)∣∣∣∣∣ = 0 =

(
m1ω

2 − k1 − k2
) (
m2ω

2 − k3 − k2
)
− k22 (56)

Expanding,

m1m2ω
4 − [(k2 + k3)m1 + (k1 + k2)m2]ω

2 + (k1 + k2) (k2 + k3) − k
2
2 = 0 (57)

This is a quadratic in ω2, which we can readily solve:



ω2 =
(k2 + k3)m1 + (k1 + k2)m2 ±

√
((k2 + k3)m1 + (k1 + k2)m2)

2 − 4m1m2 [(k1 + k2) (k2 + k3) − k22]

2m1m2

ω2 =
(k2 + k3)m1 + (k1 + k2)m2 ±

√
((k2 + k3)m1 − (k1 + k2)m2)

2 + 4m1m2k
2
2

2m1m2
(58)

It doesn’t simplify a lot more than this in the general case. Let us examine then the cases of interest.

FIrst, it instructive to keep the more general setup with three springs but consider the special case of identical

masses and springs by letting k1=k2=k3≡k and m1=m2≡m. Our expression above then simplifies to

ω2 =
4km± 2km

2m2
=

{
3k

m
,
k

m

}
(59)

Physically, this makes sense. We have the symmetric mode (ω=
√
k/m) in which the two masses move in

unison back and forth and the central spring remains uncompressed at all times. The second is an antisym-

metric mode which has the two masses moving out of phase, both moving outward at the same time or both

moving inward at the same time. The exterior springs are being compressed by each mass during half a cycle

of oscillation, and during the other half the central spring is compressed by both masses (so twice as much),

almost as if three springs are acting on each mass. This leads to the higher frequency of the antisymmetric

ω=
√

3k/m mode.

(b) For the diatomic molecule, we set k1=k3= 0 and k2≡k in the general solution, leading to

ω2 =
km1 + km2 ±

√
(km1 − km2)

2 + 4m1m2k2

2m1m2
=
k (m1 +m2)± k (m1 +m2)

2m1m2
(60)

ω2 =
k (m1 +m2)

m1m2
=
k

µ
(61)

Here µ=m1m2/(m1 +m2) is the reduced mass of the system. The diatomic molecule has only one mode

of vibration, the antisymmetric one, which is the same as that of a mass µ connected to a fixed point by a

spring k. The symmetric mode in this case would correspond to a translation of the whole molecule, since

it isn’t anchored to anything. If the molecule is symmetric, m1=m2, we have ω2= 2k/m – since the only

mode is the one in which both atoms compress the spring together, we would expect the frequency to be

twice as high as that of a single mass connected by a spring to a fixed point.

(c) For the symmetric diatomic molecule on a surface, we set k3=0 and m1=m2≡m in the general solution:

ω2 =
(k1 + 2k2)m±

√
(k2m− (k1 + k2)m)2 + 4m2k22

2m2
=

(k1 + 2k2)±
√

(k2 − (k1 + k2))
2 + 4k22

2m

ω2 =
k1 + 2k2 ±

√
4k22 + k

2
1

2m
(62)

If the springs are equal – not very realistic for a molecule adsorbed on a surface – this simplifies to



ω2 =

(
3±
√

5
)

2

k

m
(63)

While our free diatomic molecule has only a single mode of vibration, after bonding to the surface the sys-

tem again has two vibrational modes, corresponding to symmetric and antisymmetric vibrations of the two

masses.

Under the more realistic assumption that the “spring” coupling the molecule to the surface is much weaker

than the interatomic bond, k1�k2,

ω2 =
k1 + 2k2 ±

√
4k22 + k

2
1

2m
=
k1 + 2k2 ± 2k2

√
1 +

k2
1

4k2
2

2m
≈
k1 + 2k2 ± 2k2

(
1 + k2

1

8k2
2

)
2m

(64)

ω2 ≈

{
k1 −

k2
1

4k2

2m
,
k1 + 4k2 +

k2
1

4k2

2m

}
≈
{
k1

2m
,

2k2
m

+
k1

2m

}
(65)

If we write the isolated diatomic molecule’s vibrational frequency as ωo=
√

2k2/m,

ω2 =

{
k1

2m
,

2k2
m

+
k1

2m

}
= {δω,ωo + δω} (66)

Thus, for weak coupling to the surface, the fundamental mode is shifted upward by an amount δω=
√
k1/2m,

and a new low-frequency mode is introduced at δω. Spectroscopically, one can use this upward shift of the

fundamental mode to detect the absorption of molecules on a surface and estimate the adsorption energy.


