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Homework 4 Solutions

1. Can you see me now? Using the Bohr model for the hydrogen atom, which possible emitted or
absorbed wavelengths fall in the visible region of the spectrum (380− 770 nm)? Include transitions
that involve the “level” n = ∞, e.g., an electron absorbing a photon and subsequently escaping the
proton to a state with E = 0.

Solution: You can quickly verify that for transitions starting and ending on n = 1, possible
wavelengths range from 121.5nm to 91.2 nm, well into the ultraviolet. Similarly, for n = 3, you
can verify that all transitions give wavelengths in the infrared, greater than 800nm. Only transitions
involving n = 2 and a higher level give visible wavelengths, the so-called Balmer series, and the
transitions have visible wavelengths when the higher level is n′ = {3, 4, . . . , 9}. For n′ = 10 and
beyond, the wavelengths are shorter than 380 nm in the ultraviolet.

2. Spatial distribution of probability for a H state. What is the probability of finding an n=3, l=2
electron between 5ao and 6ao? Hint: you need only use the radial wave function R(r), see section
7.4 in your text.

Solution: The relevant radial wave function is

R =
4

81
√

30a3/2
o

r2

a2
o

e−r/3ao (1)

We know then that P(r) = |R|2r2, or

P(r) =
24

94 · 30a3
o

(
r

ao

)4
e−2r/3ao · r2 =

24

94 · 30ao

(
r

ao

)6
e−2r/3ao (2)

The probability the electron is between 5ao and 6ao is then integrating P(r)dr from 5ao and 6ao:

P(in [5ao, 6ao]) =
24

94 · 30ao

6ao∫
5ao

(
r

ao

)6
e−2r/3ao dr (3)

It is more convenient to define a variable ρ = r/ao, dρ = dr/ao. The resulting integral can be
looked up or evaluated numerically.

P(in [5ao, 6ao]) =
24

94 · 30

6∫
5

ρ6e−2ρ/3 dρ =
24

94 · 30 ≈
24

94 · 30 · 707.0 ≈ 0.057 (4)
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3. Angular distribution of probability for a H state. Find the directions in space where the angular
probability density for the l= 3, ml = 0 electron in hydrogen has its maxima and minima. Hint:
you only need P(θ,ϕ). See section 7.5 in your text.

Solution: For l = 3, ml = 0, the radial wave function is

p(θ) =

√
7

16π
(
5 cos3 θ− 3 cos θ

)
(5)

The angular probability density is then

P(θ) = |p(θ)|2 =
7

16π
(
5 cos3 θ− 3 cos θ

)2 (6)

Finding the extreme values means setting dP/dθ = 0. Let A = 7
16π for convenience.

dP

dθ
= 2A

(
5 cos3 θ− 3 cos θ

) (
−15 sin θ cos2 θ+ 3 sin θ

)
= 0 (7)

0 = 6A (sin θ) (cos θ)
(
5 cos2 θ− 3

) (
1 − 5 cos2 θ

)
(8)

Any of the four factors in parentheses above can separately be zero. For each, we will need to do a
second derivative test or make a plot to see whether we have found maxima or minima, the results
of which are summarized below for 0 6 θ 6 90.

condition θ max or min?

sin θ = 0 0 max
cos θ = 0 90 min
5 cos2 θ = 3 39 min
5 cos2 θ = 1 63 max

Here’s what a cross-section of the orbital looks like.
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4. Most probable radius for a H state. Find the most probable radius of an electron in the 3p state.
Note

R3p(r) =
8

9
√

2 (3ao)3/2

(
r

ao
−
r2

6a2
o

)
e−r/3ao (9)

where a0=
4πε0 h2

mee2 =0.529×10−10 m is the Bohr radius.

Solution: First, define a new variable ρ = r/ao, and let A = 8
9
√

2(3ao)3/2 for convenience. We have
then

R = A
(
ρ− ρ2/6

)
e−ρ/3 (10)

|R|2 = A2 (ρ− ρ2/6
)2
e−2ρ/3 (11)

The probability density is P(r) = 4πr2|R|2, or

P(r) = 4πr2A2 (ρ− ρ2/6
)2
e−2ρ/3 = 4πa2

oA
2ρ2 (ρ− ρ2/6

)2
e−2ρ/3 (12)

Overall constants are not terribly important here, so let B = 4πa2
oA

2, so

P(r) = Bρ2 (ρ− ρ2/6
)2
e−2ρ/3 (13)

The most probable radius is when dP/dr = 0, so we grind through it.

dP

dr
= B

(
−

2
3

)
e−2ρ/3ρ2 (ρ− ρ2/6

)2
+ 2Be−2ρ/3ρ

(
ρ− ρ2/6

)2 (14)

+ Bρ2e−2ρ/3ρ2 · 2
(
ρ− ρ2/6

)
(1 − ρ/3) = 0 (15)

Factor out ρ2 and (ρ− ρ2/6), meaning ρ = {0, 6} are extreme values. Perform the requisite cancel-
lations and simplify.

0 = −
2
3
(
ρ− ρ2/6

)
+ 2 (1 − ρ/6) + 2 (1 − ρ/3) (16)

0 = −
2
3ρ+

1
9ρ

2 + 2 − ρ/3 + 2 − 2ρ/3 (17)

0 =
ρ2

9 −
5
3ρ+ 4 = 0 (18)

0 = ρ2 − 15ρ+ 36 = (ρ− 12) (ρ− 3) (19)

Thus, the other extreme values are 12 and 3, meaning the whole set is ρ = {0, 3, 6, 12}. A quick
plot or substitution verifies that P is maximal for ρ = 12, or r = 12ao.
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5. Expectation value of the radius for a H state. Using the radial wave function in the previous
problem, find the expected value of the radial position 〈r〉 of an electron in the 3p state. Is this
position the same you found in the previous question? Why or why not?

Solution: From the previous problem,

P(r) = |R|2r2 = A2r2
(
r

aO
−
r2

6a2
o

)
e−2r/3ao (20)

To find 〈r〉, we have to integrate rP(r) from 0 to ∞. Use the same substitution ρ = r/ao, dρ =

dr/ao, the resulting integral is known.

〈r〉 =
∞∫
0

rP(r)dr =

∞∫
0

r ·A2r2
(
r

ao
−
r2

6a2
o

)
e−2r/3ao dr let ρ = r/ao,dρ = dr/ao (21)

= A2a4
o

∞∫
0

ρ3 (ρ− ρ2/6
)
e−2ρ/3 dρ = A2a4

o ·
54675

64 (22)

=
64

81 · 2 · 33a3
o

a4
o

54675
64 = ao

3752

34332 =
25
2 ao = 12.5ao (23)

Nearly the same as the most probable radius, but slightly larger since the 3p radial distribution is
not quite symmetric about its maximum value.

6. Quantum numbers. Explain why each of the following sets of quantum numbers (n, l,ml,ms)
is not permitted for hydrogen:

(3, 3,−1,+1
2) (2, 1,+2,−1

2) (2, 1,+1,−3
2) (3,−1,+1,+1

2)

Solution: First set: l must be less than n. Second set: |ml| cannot exceed l. Third set: spin
cannot be ms = −3/2 for an electron. Fourth set: l cannot be negative.

7. Multiplicity of atomic magnetic moments. Calculate the magnetic moments that are possible
for the n= 4 level of Hydrogen, making use of the quantization of angular momentum. You may
neglect spin. Compare this with the Bohr prediction for n=4.

Solution: If n=4, then we have possible values for l of l= {0, 1, 2, 3}. This gives us the magnetic
moments possible:

µ = −µB
√
l(l+ 1) (24)

µ = {0,
√

2,
√

6, 2
√

3}µB (25)
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By comparison, the Bohr model would predict for level n a magnetic moment of nµB, or 4µB in
this case, since L = n h and µ = µBL/ h.

8. Transitions in a magnetic field. Transitions occur in an atom between l=2 and l=1 states in
a magnetic field of 3.5000T, obeying the selection rules ∆ml=0,±1. If the wavelength before the
field was turned on was 543.00nm, determine the wavelengths that are observed. You may find the
following relationship useful:

∣∣∆λ∣∣ = ∣∣∣∣dλdE
∣∣∣∣∆E =

hc

E2∆E =
λ2

hc
∆E (26)

Recall that the Zeeman effect changes the energy of a single-electron atom in a magnetic field by

∆E = ml

(
e h

2me

)
B with ml = −l,−(l− 1), . . . , 0, . . . , l− 1, l (27)

For convenience, note that e h/2me=µB≈57.9µ eV/T, and neglect the existence of spin.

Solution: In a magnetic field B, the energy levels for a given l state will split according to their
value ofml. If the original energy of the level is El, then the original level will be split symmetrically
into 2l+ 1 sub-levels, with adjacent levels shifted by µBB:

El,ml
= El +mlµBB (28)

This is shown schematically below for l=2 and l=1 levels. The l=2 level has possible ml values
of ml= {−2,−1, 0, 1, 2}, and thus in a magnetic field B what was a single level is now 5 individual
levels. For l=1, we have ml values of only ml= {−1, 0, 1}, and the original level becomes a triplet
upon applying a magnetic field.

l=2

l=1

∆Eo

0

Eo

2

1

−1

−2

ml

0

1

−1

B=0 B �=0

Figure 1: Allowed transitions from l=2 to l=1 with a magnetic field applied.

Before calculating anything, we can apply the dipole selection rules, which states that ml can
change by only 0,±1. This means that, for example, from the l= 2, ml= 1 level an electron may
“jump” to the any of the l= 1, ml = {2, 1, 0} levels. On the other hand, from l= 2, ml = 2 level

5



an electron may only jump to the l=1, ml=1 level. Following these rules, we see from the figure
above that there are only 9 possible transitions allowed. Further, noting that the levels are equally
spaced, we have in fact only three different transition energies.

The spacing between the levels ∆Eo is the Zeeman energy given above, ∆Eo = µBB. From our
schematic above, it is clear that the only possible transition energies in a magnetic field are the
original transition energy (no change in ml), or the original transition energy plus or minus ∆Eo
(ml changes by ±1). The original transition energy Eo is readily found from the given wavelength
λ=543.00nm:

Eo =
hc

λ
≈ 2.28 eV (29)

Thus, the new transition energies must be

Eo 7−→ {Eo − ∆Eo,Eo,Eo + ∆Eo} = {Eo − µBB,Eo,Eo + µBB} (30)

That is, the original transition energy plus two new ones. We can easily convert these two new
energies into two new wavelengths by the energy-wavelength relationship E=hc/λ. However, this
does require some numerical precision (i.e., carrying at least 7-8 digits in your calculations, and
knowing the requisite constants to commensurate precision), and it is somewhat easier to simply
calculate the change in energy by itself. Since we know the energy changes by ±∆Eo, using the
formula given we have

∣∣∆λ∣∣ = λ2∆Eo
hc

=
λ2µBB

hc
≈ 0.0482nm (31)

The shift in energy of ∆Eo implies a shift in wavelength of ∆λ ≈ 0.0482 nm, meaning the new
transitions must be at the original wavelength λ plus or minus ∆λ:

λ 7−→ {λ− ∆λ, λ, λ+ ∆λ} = {542.95, 543.00, 543.05} nm (32)

9. Gaussian Wave Packets and minimum uncertainty. A particle of mass m is in the state

ψ(x, t) = Ae−a[(mx2/ h)+it] (33)

where {A,a} ∈ R and {A,a}>0. (a) Find A. (b) For what potential energy function V(x) does ψ
satisfy the Schrödinger equation? (c) Calculate the expected values of x, x2, p, and p2. (d) Find
∆x and ∆p. Is their product consistent with the uncertainty principle?

Solution: In order to find A, we have to normalize. First, since we have a complex wavefunction,
let’s make sure we get the square right. We will assume A is a positive real constant for convenience.i

iIf A were complex, we could always absorb the imaginary part into the exponential, which would make it an

6



|ψ|2 = ψ∗ψ =
(
Ae−a[(mx

2/ h)−it]
)(
Ae−a[(mx

2/ h)+it]
)
= A2e−2amx2/ h (34)

You didn’t forget to do the complex conjugate, right? Now we can normalize, remembering that

1 =

∞∫
−∞

|ψ|2dx =

∞∫
−∞

A2e−2amx2/ hdx = A2
√
π h

2am (35)

=⇒ A =
4

√
2am
π h

(36)

What potential energy function gives this wave function? The function in question is a gaussian,
and if you read the book carefully you should have seen it already. Let’s not spoil the fun though.
If we know the wave function, and plug it into the time-dependent Schrödinger’s equation, the only
unknown should be the potential, so we should be able to solve for it. First, we will need various
derivatives of ψ.ii Conveniently, for each of the derivatives you can factor out ψ to simplify things.

∂ψ

∂x
= −

2am
 h
xψ (37)

∂2ψ

∂x2 = −
2am

 h
ψ+

4a2m2

 h2 x2ψ = −
2am

 h

(
1 −

2am
 h
x2
)
ψ (38)

∂ψ

∂t
= −iaψ (39)

Substituting into the time-dependent Schrödinger equation, and solving for the Vψ term:

i h
∂ψ

∂t
= −

 h2

2m
∂2ψ

∂x2 + Vψ (40)

Vψ = i h
∂ψ

∂t
+

 h2

2m
∂2ψ

∂x2 (41)

Vψ = a hψ−
 h2

2m
2am

 h

(
1 −

2am
 h
x2
)
ψ (42)

Now every term still has a ψ left, so we can cancel all of those.

V = a h− a h+ 2a2mx2 =⇒ V = 2ma2x2 (43)

The potential that produces this wavefunction is a quadratic one, i.e., the simple harmonic oscil-
lator potential. Knowing this, we can make the usual identification that V= 1

2kx
2, from which we

would deduce k=4ma2 and ω=
√
k/m=2a for the given state of the oscillator.

offset in the t term. That amounts to a choice of when to zero your clock, which we can always do, so we lose nothing
by making the assumption that A is real.

iiRemember, if you are not familiar with partial derivatives, just read “∂ψ/∂t as “dψ/dt.
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How about the expectation values? You can quickly convince yourself that 〈x〉= 0, since x|ψ|2 is
an odd function of x. You could also just asset this to be true - since the potential is symmetric,
the expected position should be in the center, at x=0.

〈x〉 =
∞∫

−∞
x|ψ|2 dx =

∞∫
−∞

xA2e−2amx2/ h dx = 0 (44)

The same will hold for 〈p〉, though again you could assert that the particle must spend as much
time going one way as the other in a symmetric potential.

〈p〉 =
∞∫

−∞
ψ∗

 h

i

∂ψ

∂x
dx =

∞∫
−∞

Ae−a[(mx
2/ h)−it]

 h

i

(
−

2am
 h
xAe−a[(mx

2/ h)+it]
)
dx (45)

= 2iamA2
∞∫

−∞
xe−2amx2/ h dx = 0 (46)

There is no really clever way to do the other two by inspection, just grind it out.

〈x2〉 =
∞∫

−∞
x2|ψ|2 dx =

∞∫
−∞

x2A2e−2amx2/ h dx = A2
√
π

2

(
 h

2am

)3/2
=

 h

4am (47)

The momentum operator is ( h/i)(d/dx), you can either square that or use 2m times kinetic energy.
Either way, it is − h2(d2/dx2).

〈p2〉 =
∞∫

−∞
ψ∗
(
− h2) ∂2ψ

∂x2 dx = A
2 h2

∞∫
−∞

|ψ|2
2am

 h

(
1 −

2am
 h
x2
)
dx (48)

〈p2〉 = 2am h

∞∫
−∞

A2|ψ|2 dx− 4a2m2
∞∫

−∞
A2x2|ψ|2 (49)

(note 1st term is normalization condition and integral is 1, 2nd is 〈x2〉 we already found)

〈p2〉 = 2am h− 4a2m2  h

4am = am h (50)

The uncertainties are then

∆x =
√
〈x2〉− 〈x〉2 =

√
 h

4am − 0 =

√
 h

4am (51)

∆p =
√
〈p2〉− 〈p〉2 =

√
am h− 0 =

√
am h (52)

∆x∆p =
 h

2 (53)
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In fact, gaussian wave functions satisfy the minimum uncertainty principle allowed.

10. Is zero energy still a free choice? Suppose you add a constant Vo to the potential energy
(by “constant” we mean independent of both x and t). In classical mechanics, this doesn’t change
anything, but what about quantum mechanics? (a) Show that the wave function picks up a time-
dependent phase factor: exp (−iVot/ h). (b) What effect does this have on the expectation value
of a dynamical variable like x or p?

Solution: Suppose originally ψ solves the Schrödinger equation without Vo:

i h
∂ψ

∂t
= −

 h2

2m
∂2ψ

∂x2 + Vψ (54)

We want to find ψo such that

i h
∂ψo

∂t
= −

 h2

2m
∂2ψo
∂x2 + (V + Vo)ψ (55)

Our claim is that

ψo = ψe−iVot/
 h (56)

Taking the derivative of the above,

i h
∂ψo

∂t
= i h

∂ψ

∂t
eiVot/

 h + i h

(
−iVo

 h

)
ψe−iVot/

 h (57)

We know what i h∂ψ∂t is from Eq. 55. Using that and the definition of ψo,

i h
∂ψo

∂t
=

(
−

 h2

2m
∂2ψ

∂x2 + Vψ

)
e−iVot/

 h + i h

(
−iVo

 h

)
ψe−iVot/

 h (58)

Since ψo and ψ have the same dependence on x, their spatial derivatives only differ by the same
factor eiVot/ h that ψo and ψ do:

∂2ψo
∂x2 =

∂2ψ

∂x2 e
−iVot/ h (59)

Substituting this,

i h
∂ψo

∂t
= −

 h2

2m
∂2ψo
∂x2 + Vψe−iVot/

 h + Voψe
−iVot/ h (60)

But since we claim ψo = ψe−iVot/ h,

i h
∂ψo

∂t
= −

 h2

2m
∂2ψo
∂x2 + (V + Vo)ψo (61)

Thus, shifting the overall potential energy by a constant amount Vo just adds a phase factor
e−iVot/

 h to the wavefunction. This has no effect on the expectation values dynamical variables
like x and p - since neither the x nor p operator involves the time variable, the phase factor will
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always cancel out when we take complex conjugates and calculate the expectation values. The
overall phase of the wave function will cancel out whenever you calculate a measurable quantity.
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