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official things
Dr. Patrick LeClair

- leclair.homework@gmail.com  

- offices: 2012 Bevill, 323 Gallalee

- 857-891-4267 (cell)

- facebook/twitter (@pleclair)

Office hours:

- MWF 1-2 in Bevill

- Tu, Th 11-12 in Gallalee
- (email/txt ahead is best MWF)

other times by appointment

mailto:pleclair@ua.edu
mailto:pleclair@ua.edu


official things

Lecture:

 200 Gallalee

 TuTh 9:30-10:45

- we’ll need most of this time

- will go over problems, but only so many

- a big part of learning is solving on your own ...

 some notes provided (scanned or otherwise)

 no attendance policy, I will make it worth your time



What will we cover?

Relativity

Thermal radiation & Planck’s hypothesis; photons 

Wave mechanics & matter waves

Schrödinger’s equation 

Atomic structure; quantum model of the atom

multi-electron atoms & molecules

periodic solids, band theory

Spin, Fermi-Dirac statistics 

applications, such as:

- semiconductors

- lasers

- magnetic resonance



Grading and so forth

homework (25%)

- drop lowest; weekly

- PDF Posted on Blackboard

exams (two @ 25%)

comprehensive final (25%)



 Homework 

new set every week on Blackboard [pdf]

due about a week later mostly

hard copy or Blackboard submission

hard copies: my mailbox, start of class

electronic: type/scan/pics OK

can collaborate - BUT turn in your own

have to show your work to get credit



quizzes

 rare. may take the form of group activities

 previous lecture’s material (review)

 5-10 min anticipated. spontaneous.

 will count the same as a homework set

 do the homework & reading, and it will be trivial



stuff you need

textbook

Krane 3rd edition

Amazon has it

used/older edition OK

calculator

basic with trig/log

graphing unnecessary

paper & writing implement



useful things

Purcell, Edward M. Electricity and Magnetism. In Berkeley Physics Course. 2nd ed. Vol. 2. New York,
NY: McGraw-Hill, 1984. ISBN: 9780070049086.

Feynman, Richard P., Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics. 2nd ed.
Vol. 2. Reading, MA: Addison-Wesley, 2005. ISBN: 9780805390452.

For some material (e.g., optics and circuits) we will make use of supplemental online notes from PH102,
which you can find there:

http://faculty.mint.ua.edu/~pleclair/ph102/Notes/

7.3 Calculator

A basic scientific calculator with trigonometric and logarithmic functions is required. Nothing more
complicated (such as a graphing calculator) will be of much additional help.

8 Course Web Site

In an attempt to make things easier for everyone, we have been using a “blog” format to make available all
course information as rapidly as possible. It will be constantly updated, for example to provide homework
hints, laboratory procedures, schedule updates, and various announcements, etc. The course blog can be
found at:

http://ph126.blogspot.com/

There are a lot of reasons for doing this. Here are a few.

• the easier it is for the instructor to post information, the more often it will happen.
• atom/rss feeds so you don’t have to constantly look for updates
• you can post comments and give feedback ... and you will get a reply

Bookmark this blog, as it will be your main source of information for PH126 this semester. A few other
points about the course web site:

• all course content (quiz/homework solutions, labs, etc.) will be posted as links to PDFs
• inappropriate comments will be deleted
• all past posts will be archived and searchable, e.g., for retreiving links to old notes
• since this blog is publicly viewable, no grades or personal information will be posted here or any-

where else. your privacy will be preserved
• since this blog is publicly viewable, think before you post personal information
• anonymous comments will be allowed, so you can ask questions without hesitation
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(E&M review, higher level than Serway)

(General goodness)

(also: online notes of some kind posted for many lectures)



showing up

 we hope you will find some utility in the class

 homework/exams may rely on stuff I say in class

 missing an exam is seriously bad.

  acceptable reason ... makeup or weight final



blackboard

posting of HW, notes, grades

course calendar

that’s probably about all we’ll do with it

if you are not on the roster, see me after class



Schedule

 Online calendar ... will try to keep up the pace

 Spreadsheet of dates/topics/reading also posted

 For Tuesday:

read Ch. 1, and Ch. 2 at least through 2.4

-or- read online notes from PH102



Quick advertisements:

Phy-EE double major

Electrical and Computer Engineering majors need 
~ 4 additional hours to complete a second major in 
Physics. 

This combination of fundamental and applied 
physics can be highly advantageous when the 
graduate enters the job market. 



Today

“Review” of classical physics

Relativity

why do we need it?

what are the basic principles?

how can we find a model consistent with them?



Other

Parking tickets start at $25

Calculus fluency assumed (through Cal II)



The laws of classical physics, in brief

1. Motion

d p

dt
=  F where  p =

m v�
1� v2/c2

Newton, with Einstein’s modification

2. Gravitation

⇧F = �G
m1m2

r2
r̂12



3. Conservation of charge

⇧⇤ ·⇧j = �d�

dt

(flux of current through closed surface) = - (rate of change of charge inside)

any conservation of stuff:

(net flow of stuff out of a region) = 
(rate at which amount of stuff inside region changes)



4. Maxwell’s equations

(flux of E thru closed surface) = (charge inside)

(flux of B thru closed surface) = 0

(circulating E) = (time varying B)
(line integral of E around loop) = -(change of B flux through loop)

(circulating B) = (time varying E)
(integral of B around loop) = (current through loop) + (change of E flux through loop)

�� · �E =
⇥

�r�0

�� · �B = 0

��⇥ �E = �⇤�B

⇤t

�0c
2 ��⇥ �B =�j + �r

⇤�E

⇤t

12



4. Maxwell’s equations (alt)

Magnetostatics:

�A(r) =
1

4⇥�0c2

⌃ �J(r⇤)

|�r� �r�|
dV (13)

(derive scalar potential ...)

⌅µ⇧J =

mj=+J⇧

mj=�J

µB
mJ

J
exp

�
µmJB

kBT

⇥⇤ mj=+J⇧

mj=�J

exp

�
µmJB

kBT

⇥
= µBBJ(z)

⌅

S

�E · d�A =
q

�0�r
=

1

�0�r

⌃

V
⇤ dV

⌅

S

�B · d�A = 0
⌅

C

�E · d�l = � ⌅

⌅t

⌃

S

�B · d�A

�0c
2

⌅

C

�B · d�l =

⌃

S

�j · d�A + �r
⌅

⌅t

⌃

S

�E · d�A

�⇥ · �E =
⇤

�r�0

�⇥ · �B = 0

�⇥ ⇥ �E = �⌅�B

⌅t

�0c
2 �⇥ ⇥ �B =�j + �r

⌅�E

⌅t
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Gauss: electric charge = source of electric fields

There are no magnetic charges

Faraday: time-varying B makes a circulating E

Ampere: currents and time-varying E make B

5. Force law

⌃F = q ⌃E + q⌃v � ⌃B



And that’s all of it!

Of course, the solutions are tougher ...



(a)

(b)

(c)

∆x = xf − 0 = xf

(xf , yf )(xi, yi)

(0, 0) (xf , 0)

∆x
′
= ∆x

∆y
′
= 0

∆x = 10 m

y

x

xi

yi

y
′

x
′O

′
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Joe Moe

!vJoe !vMoe

do

really the same situation - we just 
assume the ground is ‘special’



8 1 Relativity

frame of reference, we must be able to describe their relative motion, or how the separation between
Joe and Moe changes with time, even though we can’t speak of their absolute velocities in any sense.

Joe Moe

!vJoe !vMoe

do

Fig. 1.5 Joe and Moe running at different speeds in
the same direction. Both Joe and Moe measure the
same relative velocity with respect to each other.

Let’s say we arbitrarily choose Joe’s position at t = 0 as our reference point. It is easy then to
write down what Joe and Moe’s positions are at any later time interval � t:

xJoe = vJoe� t xMoe = d0 + vMoe� t (1.2)

We can straightforwardly write down the separation between them (their relative displacement) as
well:

�xMoe-Joe = xMoe� xJoe = d0 + vMoe� t� vJoe� t = d0 +(vMoe� vJoe)� t (1.3)

Sure enough, their relative displacement only depends on their starting separation and their relative
velocity, vMoe�vJoe. Further, both Joe and Moe would agree with this, since we could arbitrarily
choose Moe’s position at t =0 as our reference point, and we would end up with the same answer.
Since there is nothing special about either position, we can choose any point whatsoever as a refer-
ence, and wind up with the same result. We end up with the same physics no matter what reference
point we choose, which one we choose is all a matter of convenience in the end.

Choosing a coordinate system:

1. Choose an origin. This may coincide with a special point or object given in the problem
- for instance, right at an observer’s position, or halfway between two observers. Make it
convenient!

2. Choose a set of axes, such as rectangular or polar. The simplest are usually rectangular or
Cartesian x-y-z, though your choice should fit the symmetry of the problem given - if your
problem has circular symmetry, rectangular coordinates may make life difficult.

3. Align the axes. Again, make it convenient - for instance, align your x axis along a line
connecting two special points in the problem. Sometimes a thoughtful but less obvious
choice may save you a lot of math!

4. Choose which directions are positive and negative. This choice is arbitrary, in the end, so
choose the least confusing convention.

This seems simple enough, but if we think about this a bit longer, more problems arise. Who
measures the initial separation d0, Joe or Moe? Who keeps track of the elapsed time � t? Does it
matter at all, can the measurement of distance or time be affected by relative motion? Of course, the
answer is an awkward ‘yes’ or we would not dwell on this point. If we delve deeper on the problem of
relative motion, we come to the inescapable conclusion that not only is velocity a relative concept,
our notions of distance and time are relative as well, and depend on the relative motion of the
observer. In order to properly understand these deeper ramifications, however, we need to perform a
few more thought experiments.
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no difference
can’t measure earth’s velocity 

relative to empty space



Joe

|!v| = 0.9c
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Joe flips on the light
he sees the light hit 

the walls at the same time
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|!v| = 0.9c

c∆t

What does Moe see?
the ship moved;

the origin of the light did not
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Joe bounces a laser off of some mirrors
he counts the round trips

this measures distance
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Moe sees the boxcar move;
once the light is created, it does not.

Moe sees a triangle wave
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and unprimed on the other, we arrive the transformations between positions measured by moving
observers in their usual form:

Transformation of distance between reference frames:

x⇤ = � (x� vt) (1.37)

x = �
�
x⇤+ vt ⇤

⇥
(1.38)

Here (x, t) is the position and time of an event as measured by an observer in O stationary to
it. A second observer in O⇤, moving at velocity v, measures the same event to be at position
and time (x⇤, t ⇤).

These equations include the effects of length contraction and time dilation we have already de-
veloped, as well as including the relative motion between the observers. If we use Eqs. 1.35 and 1.36
together, we can also arrive at a more direct expression to transform the measurement times as well.
To start, we’ll take Eq. 1.37 as written, and substitute it into Eq. 1.38:

x = �
�
x⇤+ vt ⇤

⇥
(1.39)

= �
�
� (x� vt)+ vt ⇤

⇥
(1.40)

= �2x� �2vt + �vt ⇤ (1.41)

So far its a bit messy, but it will get better. Now let’s solve that for t ⇤. A handy relationship we will
make use of is

�
1� �2⇥/�2 =�v2/c2, which you should verify for yourself.

�vt ⇤ =
�
1� �2⇥x+ �2vt (1.42)

=⇥ t ⇤ = �t +
�
1� �2⇥x

�v
(1.43)

= �
⌥

t +
1� �2

�2

⇤x
v

⌅�
(1.44)

= �
 
t� vx

c2

⌦
(1.45)

And there we have it, the transformation between time measured in different reference frames. A
similar procedure gives us the reverse transformation for t in terms of x⇤ and t ⇤.

Time measurements in different non-accelerating reference frames:

t ⇤ = �
⇤

t� vx
c2

⌅
(1.46)

t = �
⇧

t ⇤+
vx⇤

c2

⌃
(1.47)

Here (x, t) is the position and time of an event as measured by an observer in O stationary to
it. A second observer in O⇤, moving at velocity v, measures the same event to be at position
and time (x⇤, t ⇤).

The first term in this equation is just the time it takes light to travel across the distance x from
point P, corrected for the effects of time dilation we now expect. The second term is new, and it
represents an additional offset between the clock on the ground and the one in the car, not just one
running slower than the other. What it means is that events seen by the girl in frame O do not happen
at the same time as viewed by the boy in O⇤!
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1.3 Consequences of Relativity 23

This is perhaps more clear to see if we make two different measurements, and try to find the
elapsed time between two events. If our girl in frame O sees one even take place at position x1 and
time t1, labeled as (x1, t1), and a second event at x2 and t2, labeled as (x2, t2), then she would say
that the two events were spatially separated by �x=x1�x2, and the time interval between them was
� t =t1�t2. If we follow the transformation to find the corresponding times that the boy observes, t ⇥1
and t ⇥2, we can also calculate the boy’s perceived time interval between the events, � t ⇥:

Elapsed times between events in non-accelerating reference frames:

� t ⇥ = t ⇥1 � t ⇥2 = ⇥
�

� t � v�x
c2

⇥
(1.48)

If observer in O stationary relative to the events (x1, t1) and (x2, t2) measures a time difference
between them of � t = t1�t2 and a spatial separation �x=x1 � x2, an observer in O⇥ measures
a time interval for the same events � t ⇥. Events simultaneous in one frame (� t = 0) are only
simultaneous in the other (� t ⇥=0) when there is no spatial separation between the two events
(�x=0).

For two events to be simultaneous, there has to be no time delay between them. For the girl to
say the events are simultaneous requires that she measure � t =0, while for the boy to say the same
requires � t ⇥ = 0. We cannot satisfy both of these conditions based on Eq. 1.48 unless there is no
relative velocity between observers (v=0), or the events being measured are not spatially separated
(�x = 0). This means two observers in relative will only find the same events simultaneous if the
events are not spatially separated! Put simply, events are only simultaneous in both reference
frames if they happen at the same spot. At a given velocity, the larger the separation between the
two events, the greater the degree of non-simultaneity. Similarly, for a given separation, the larger
the velocity, the greater the discrepancy between the two frames. This is sometimes called “failure
of simultaneity at a distance.”

In the end, this is our general formula for time dilation, including events which are spatially
separated. If we plough still deeper into the consequences of special relativity and simultaneity, we
will find that our principles of relativity have indeed preserved causality - cause always precedes
effect - it is just that what one means by “precede” depends on which observer you ask. What
relativity says is that cause must precede its effect according to all observers in inertial frames,
which equivalently prevents both faster than light travel or communication and influencing the past.

1.3.4.1 Summary of sorts: the Lorentz Transformations

We are now ready to make a summary of the relativistic transformations of time and space. Let us
consider two reference frames, O and O⇥, moving at a constant velocity v relative to one another.
For simplicity, we will consider the motion to be along the x and x⇥ axes in each reference frame, so
the problem is still one-dimensional. The observer in frame O measures an event to occur at time
t and position (x,y,z). The event is at rest with respect to the O frame. Meanwhile, the observer in
frame O⇥ measures the same event to take place at time t ⇥ and position (x⇥,y⇥,z⇥). Based on what we
have learned so far, we can write down the general relations between space and time coordinates in
each frame, known as the Lorentz transformations:

Lorentz transformations between coordinate systems:
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let’s work out some problems
































