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1
Introduction to Molecules and Bonds

What we learned so far is that an isolated proton and an isolated electron can gain 13.6 eV (about
1300 kJ/mol) by joining together to form a hydrogen atom. That is, it is energetically favorable for
them to bind together, so given a chance that is what they do. We also know that larger numbers of
protons and electrons can lower their energy by forming heavier atoms, and all of them can combine
in various energetically-favored ways to form stable molecules. Two hydrogen atoms can lower their
overall energy by forming an H2 molecule.

Combining atoms like this forms chemical bonds, leading to substances potentially very different
than their constituents. For example, a violently reactive metal (Na) can combine with a poisonous
gas (Cl2) to form common table salt. Our goal now is to figure out how this happens, and what the
energy levels of molecules look like. First we can look at the problem very generally and see what
the energetics look like and what we can predict on general grounds. Next, we’ll need approximate
methods to say something concrete about molecular energy levels - we already know we can’t solve
Schrödinger’s equation exactly even for Helium, for multiple atoms the situation is even worse. We’ll
use the variational method, which will lead us to the linear combination of atomic orbitals (LCAO)
scheme you probably saw in intro chemistry. At that point, the real challenge will be to extend our
understanding to solids - really interesting things happen when you put lots of atoms together.

Is this then not just chemistry? There is more to the world than reductionism. (Relevant article)
Complexity brings interesting new things we didn’t expect from the sum of the parts - like getting
salt from a poisonous gas and an explosively-reactive metal. We need quantum physics and electro-
dynamics to understand how bonds work, and then the really complicated things get started. The
rest is certainly not stamp collecting, as the saying goes, and there is no rigid boundary between
chemistry and physics (or engineering, etc). Our job is to learn about interesting and practical
things, what someone wants to call it is their business. (Relevant comic.)

1.1 General mechanical properties of bonds

Clearly, there must be an attractive force for a bond to form, and we know this must be the Coulomb
interaction. We’ve already reasoned that bonds should form when electrons could be “shared." For
example, Na desperately wants to give up its outer electron to reach a closed shell (like Ne), while
Cl desperately wants one more electron to reach a closed shell (like Ar). It makes sense they would
want to combine. What is less obvious is why they still stay some distance apart. Why do Na and
Cl stay about a quarter of a nanometer apart rather than pulling even closer together?
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2 1.1 General mechanical properties of bonds
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Figure 1.1: Schematic energy vs. separation for a diatomic molecule

The answer is that there must be a repulsive force at short ranges for an equilibrium spacing to exist.
When the ions get very close together, the electron clouds are distorted, and the nuclei “see” each
other a little better and repel each other. Long story short: there is a very short-range repulsive
force in addition to the longer-ranging attractive force that leads to an equilibrium spacing of the
atoms forming a bond. Figure 1.1 is a schematic of what the energy versus separation looks like for
a pair of atoms forming a bond.

A few key aspects. First, the energy E goes to zero for large r, as it must. Second, is attractive
(E < 0) in a region above a critical radius rc < r < ∞. Third, at the equilibrium radius ro the
energy is minimum, a gain of Ec below the value for infinite separation. Fourth, below the crit-
ical radius, the situation is energetically unfavorable, and the reaction is repulsive. Recall that
F(r) = −dE/dr, so a large negative slope means a large positive (repulsive) force. Finally, at the
equilibrium radius the force is zero (zero slope), the energy minimal, and for any displacements the
force is restoring - displacements lead to a force pushing the system back to equilibrium.

The exact mathematical form of E(r) is not so interesting right now. There are various models
one can use and parameterize to do calculations, but for now only the general properties outlined
above are of interest. As it turns out, just knowing the basic properties is enough for us to answer
interesting questions about mechanical properties, such as “what happens when we try to squish
something."
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1.1 General mechanical properties of bonds 3

1.1.1 Compression of solids

Let’s say we have a cube of a solid material, with sides of length a. Each atom is at an equilibrium
distance ro from the others, with N atoms per unit volume. For each atom, its energy as a function
of position is E(r) (a function which looks like the one in Fig. 1.1) which is minimum at ro. To this
cube, we will apply uniform pressure (isotropic compression) on every face by using a force F, or
more conveniently a stress (force per unit area) of σ = F/A = F/a2 on each side. What happens to
our cube?

The energy of the cube in equilibrium is the number of atoms multiplied by the energy per atom.
The number of atoms per unit volume is N and the volume is a3, so

Etot, eq = Na3E(ro) (1.1)

If we compress the cube such that each atom is ∆r closer to the others in every direction, the new
energy is

Etot, compr. = Na3E(ro − ∆r) (1.2)

If we presume ∆r ≪ r, then the difference in energy is easily found from a Taylor series:

E(ro − ∆r) ≈ E(ro) +

(
∂E

∂r

)∣∣∣∣
ro

∆r+
1

2

(
∂2E

∂r2

)∣∣∣∣
ro

(∆r)2 + . . . (1.3)

∆E = E(ro − ∆r) − E(ro) ≈
(
∂E

∂r

)∣∣∣∣
ro

∆r+
1

2

(
∂2E

∂r2

)∣∣∣∣
ro

(∆r)2 + . . . (1.4)

The change in energy ∆E due to the compression, for small ∆r is relatively simple. But it is even
simpler than it looks. First, E(ro) is a constant, which we could easily define to be zero if we like.

Second, ∂E
∂r

∣∣∣∣
ro

= −F(ro) is just the force on at atom in equilibrium, which is by definition zero.

Only the second order term survives:

∆E = E(ro − ∆r) − E(ro) ≈
1

2

(
∂2E

∂r2

)∣∣∣∣
ro

(∆r)2 (1.5)

The result looks just like U = 1
2kx

2 for a simple harmonic oscillator, which indicates that the response
of the material is elastic. Our little cube of stuff behaves like a network of masses and springs. This
makes sense given that the shape of the energy curve is concave up around the equilibrium point -
a nudge in any direction gives a force trying to push the system back to equilibrium. All the math
is saying that because E(r) is concave up with a minimum at ro, the lowest order approximation
near equilibrium is a parabola, just as it would be for mass-spring system. The more important
message is that the effective spring constant k is proportional to ∂2E/∂r2 - if we can find E(r), we
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4 1.2 Bulk modulus and other properties

can calculate the mechanical properties of a pure crystal, e.g., the speed of sound, bulk modulus,
etc..i

1.2 Bulk modulus and other properties

We can get a bit further by comparing the change in energy of the crystal to the work done in
compressing it. In general, if the force increases from 0 → F while the distance changes from
0 → D, we can write for an elastic medium where F = k∆x

W =

D∫
0

F(r)dr =

D∫
0

kr dr =
1

2
kD2 =

1

2
kD ·D =

1

2
FD (1.6)

The work done is the average force times the displacement. Remember that the stress and force
relate via F = σA = σa2. What is the distance? Each atom moves by ∆r, so the change in the side
of the cube’s length would be the fractional change for a single atom times the original length of
the side:

net movement of one side toward the other =
∆r

ro
a (1.7)

However, each side moves closer to the other by half this amount, so the distance each side moves
is

D =
∆r

ro

a

2
(1.8)

Since there are 6 faces, the net work done in squishing the cube is

W = 6 · 1
2
FD = 3σa2∆r

ro

a

2
=

3

2
σa3∆r

ro
(1.9)

Compare this to our expression for ∆E, and we can identify the stress

σ =
1

3ro

∂2E

∂r2

∣∣∣∣
ro

(
∆r

ro

)
(1.10)

This tells us the stress is related to the bond energy function E(r) and linearly related to the strain
ϵ = ∆r/ro. If you are a mechanical engineer, you already knew this.

From the stress and strain, we can get the bulk modulus K which relates stress and volume change.
By definition,

K =
stress

fractional volume change
=

σ

∆V/V
(1.11)

iWhich is wildly different than finding the properties of a real material, where defects and microstructure can
dominate the mechanical properties. But it is a start.
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1.3 Bond types 5

If ∆V/V ≪ 1, which it will be since we already assumed ∆r/ro ≪ 1, we can approximate it as

∆V

V
≈ ∆x

x
+

∆y

y
+

∆y

y
=

3∆x

x
(1.12)

Here the last step is due to the material being isotropic, so the x, y, and z directions are all the
same. This leads to

K ≈ σ

3∆x/x
=

1

9ro

∂2E

∂r2

∣∣∣∣
ro

=
E

3(1− 2ν)
(1.13)

Here in the last step E is Young’s modulus and ν is Poisson’s ratio. You don’t really need to know
that part, but it will be familiar for some of the engineers. The main point is, again, that from E(r)

we can predict mechanical properties for solids. The next step is to figure out how to find E(r) by
approximate (but respectable) methods, in our case, the Variational method. These days, one can
do this for almost all materials to fantastic accuracy with numerical methods, but those techniques
are beyond the scope of this course.

1.3 Bond types

The discussion so far is relatively generic - the only real assumption is the form of E(r). We should
think a bit more about the bonding mechanisms before moving on. As a friend of mine put it glibly
on facebook, the atoms involved are playing games with electrons: “ionic bonding is keep away,
covalent is tug of war, metallic is hot potato.” And he’s got a Ph.D. in chemistry, so he knows this
stuff.ii

1.3.1 Ionic bonds

The first one we have already discussed: ionic bonding. As noted above, one atom gains electron(s)
and another loses electron(s). As Dr. Burgess notes, one atom is playing “keep away” with another’s
electron(s). Sodium ionizes to Na+, chlorine to Cl− by trading an electron, and the pair are then
electrostatically bound. What are the energetics like?

Na+ and Cl− ions form a an alternating cubic lattice like this:

The atoms are about 0.28 nm apart along an edge. Once the ionization is accomplished, which is
favorable for both atoms since it results in a closed shell, the energy is now an electrostatics problem.
Each Na+ has 6 Cl− nearest neighbors at a distance a, so the electrostatic energy is

Enn = −
ke2

a
· 6 (1.14)

iiDr. James Burgess, facebook comment on 25 March 2020.
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6 1.3 Bond types

Figure 1.2: From https: // commons. wikimedia. org/ wiki/ File: Nacl-structure. jpg ; see link for license and attribution.

That’s about −30 eV, which is great! However, there are 12 Na+ next-nearest neighbors at a distance
a
√
2 which give an unfavorable contribution to the energy.

Ennn = −
ke2

a
√
2
· 12 (1.15)

This contribution is about +44 eV, so overall the first two sets of neighbors add up to be unfavorable.
You can keep doing this for the 8 Cl atoms at a

√
3 and sum the whole thing up over sets of

increasingly-distant neighbors:

E = −
ke2

a

(
6−

12√
2
+

8√
3
+ . . .

)
= −M

ke2

a
(1.16)

Two things happen. One, the sum is overall proportional to the Na-Cl pair energy −ke2

a , the term
in brackets is just a constant. Two, it converges very slowly, amounting to M ≈ 1.748. That means
the entire crystal gains an energy per Na-Cl pair of about 1.75 times the pair energy or nearly
9 eV, which is huge, so creating the crystal is favorable even compared to individual pairs of Na-Cl,
which was already more favorable than the individual atoms. Crystals form over isolated pairs of
atoms because the collective is energetically favorable, another example where the whole is more
interesting than the sum of its parts. The constant M, the “Madelung constant" is characteristic
for each type of crystal lattice, the larger it is the more stable the crystal is.

As a result of the large energy gain, ionic bonds are quite strong, making materials that tend to be
brittle. Given the ionization that happens and the resulting segregation of positive and negative
charges, there are really no free mobile charges to speak of. Put another way, since both atoms
end up with a filled outer shell, all electrons are fairly tightly bound to their host atom, leaving no
loosely bound electrons to conduct electricity. Brittle, insulating, and sometimes, tasty.

P. LeClair PH253: Modern Physics
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1.3 Bond types 7

1.3.2 Metallic bonding

Metallic bonding will have to wait until we’ve learned enough to understand why there are metals
in the first place. And that will require getting past molecules to think more carefully about large
collections of atoms in a crystal. The gist of it is that there is some similarity with ionic bonding, but
the negative charges are electrons, not ions, and the positive charges are comparatively immobile
ions. That is, a lattice of positive ions fixed in place, and a “sea” of mobile (outer shell) electrons
that can zip around through the crystal from atom to atom, hence conducting electricity and heat.
Another view is that the electron sea is like a fluid able to flow through the crystal lattice, albeit
not without resistance. Metals, as a result, are generally ductile and malleable in addition to being
conductors. As Dr. Burgess said: hot potato - the electrons jump from site to site, and given a
thermal or electrical potential gradient, one can induce a net flow of them (a current).

1.3.3 Covalent bonding

Bonding so far has involved charge transfer of some kind, followed by unlike charges attracting each
other. This picture doesn’t work at all for a crystal of Si or C. What holds them together? Why is
there an energy gain for a bunch of Si atoms to form a crystal? Further, Si is partly conducting, not
really consistent metallic or ionic bonding. The bonds in Si and C are also very strong and highly
directional (i.e., they break preferentially along certain directions) like ionic bonds.

Covalent bonding is extremely important in organic chemistry, and inexplicable without quantum
mechanics. It is a difficult topic; for now we will just go over the basics. Covalent bonds involve
pairs of electrons, usually one from each atom participating in the bond. The electrons’ density
tends to be partly localized in the region between the two nuclei to screen them from one another,
and the spins tend to be antiparallel.iii Let’s take H2 as an example.

H2 has two protons and two electrons. The two protons will settle some distance apart - about three
quarters of a nanometer as it turns out - for reasons discussed earlier. Where will the electrons go?
They will repel each other, but will also want to shield the protons from each other since both raise
the overall energy. The idea is that the two electrons will spread their density out such that a good
share of it is between the two protons to shield them from each other, but with just enough of it on
the opposite sides of the protons to keep the electron-electron repulsion energy minimized and the
electron-proton attraction energy optimized. We talked about that already.

There is another way to view it though. Both H atoms want one more electron to complete the 1s

shell, but they don’t have enough between them. You could also say then that the two electrons in
H2 are trying to spread themselves out as much as possible to do their best to fill the outer shells

iiiAs we discussed earlier in the course, one aspect of the Pauli principle is that like spins tend to avoid each other
spatially, while unlike spins can congregate. It is a bit more complicated than that, but the idea is that since the two
electrons in the bond have to be close together, they end up with antiparallel spins.

PH253: Modern Physics P. LeClair
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8 1.3 Bond types

of both H atoms. That is, rather than thinking of the electron clouds as spatially distributed, you
could imagine that they are sharing their time. Imagine one electron sat in the middle, and the
other jumped back and forth between the opposite sides. Half the time one atom is perfectly happy,
while the other is moderately distressed, and vice versa. If the two atoms share the electrons, they
can be 100% happy 50% of the time, and so long as they are better than 50% happy the rest of the
time, it is a win. As Dr. Burgess says, “tug of war” - or take turns with the electrons, pulling them
back and forth.

Carbon, Silicon, and Germanium are all in the same row of the periodic table (see page 9) and all
4 electrons short of a filled shell:

• C: 1s22s2p2

• Si: 1s22s2p63s2p2

• Ge: 1s22s2p63s2p6d104s2p2

That’s too many to steal or give away, generally speaking, so ionic bonding is hard to pull off. On
the other hand, if four carbon atoms could share their electrons, it could work. Even better would
be to form a lattice of some kind so some of the bonds can be shared. Or sprinkle in some H atoms
to donate an electron here and there and you have hydrocarbons. The way we think about elements
in this column is that they each have four “dangling bonds” to share - they want add or subtract
four electrons to complete their outer or inner shell, and they are willing to share with other atoms.
This means that there are no electrons left to wander around and conduct electricity or heat, so
covalently-bonded materials tend to be poor conductors or insulators.

However. Let’s say we added an element like phosphorous (P) that only wants 3 electrons, not 4.
It doesn’t need to share quite as much, meaning the electrons associated with P are a bit more
loosely bound. Adding just a bit of P to Si makes it much more conductive by effectively adding
loosely bound electrons. Going the other way, boron (B) wants to gain 5 electrons, which seems
greedy, or give up 3. Either way, it isn’t sharing enough, which leads to effectively fewer electrons
than necessary. Surprisingly, this also increases the conductivity, but the reasons for this we will
have to discuss after we’ve gone a bit further in the course. The main point of this being that
covalently bonded systems are incredibly flexible. Silicon’s primary value is not so much that it is a
great conductor or a insulator, but that it is so flexible: it can be either with some gentle prodding.
That’s how we make transistors, diodes, computers, and cell phones, which we should be able to
explain by the end of the course. Well, at least the gist of it.

P. LeClair PH253: Modern Physics



1
Periodic Table

Via http://www.texample.net/media/tikz/examples/TEX/periodic-table-of-chemical-elements.tex

1 1.0079

H

Hydrogen
3 6.941

Li

Lithium
11 22.990

Na

Sodium
19 39.098

K

Potassium
37 85.468

Rb

Rubidium
55 132.91

Cs

Caesium
87 223

Fr

Francium

4 9.0122

Be

Beryllium
12 24.305

Mg

Magnesium
20 40.078

Ca

Calcium
38 87.62

Sr

Strontium
56 137.33

Ba

Barium
88 226

Ra

Radium

21 44.956

Sc

Scandium
39 88.906

Y

Yttrium
57-71

La-Lu

Lanthanide
89-103

Ac-Lr

Actinide

22 47.867

Ti

Titanium
40 91.224

Zr

Zirconium
72 178.49

Hf

Halfnium
104 261

Rf

Rutherfordium

23 50.942

V

Vanadium
41 92.906

Nb

Niobium
73 180.95

Ta

Tantalum
105 262

Db

Dubnium

24 51.996

Cr

Chromium
42 95.94

Mo

Molybdenum
74 183.84

W

Tungsten
106 266

Sg

Seaborgium

25 54.938

Mn

Manganese
43 96

Tc

Technetium
75 186.21

Re

Rhenium
107 264

Bh

Bohrium

26 55.845

Fe

Iron
44 101.07

Ru

Ruthenium
76 190.23

Os

Osmium
108 277

Hs

Hassium

27 58.933

Co

Cobalt
45 102.91

Rh

Rhodium
77 192.22

Ir

Iridium
109 268

Mt

Meitnerium

28 58.693

Ni

Nickel
46 106.42

Pd

Palladium
78 195.08

Pt

Platinum
110 281

Ds

Darmstadtium

29 63.546

Cu

Copper
47 107.87

Ag

Silver
79 196.97

Au

Gold
111 280

Rg

Roentgenium

30 65.39

Zn

Zinc
48 112.41

Cd

Cadmium
80 200.59

Hg

Mercury
112 285

Uub

Ununbium

31 69.723

Ga

Gallium

13 26.982

Al

Aluminium

5 10.811

B

Boron

49 114.82

In

Indium
81 204.38

Tl

Thallium
113 284

Uut

Ununtrium

6 12.011

C

Carbon
14 28.086

Si

Silicon
32 72.64

Ge

Germanium
50 118.71

Sn

Tin
82 207.2

Pb

Lead
114 289

Uuq

Ununquadium

7 14.007

N

Nitrogen
15 30.974

P

Phosphorus
33 74.922

As

Arsenic
51 121.76

Sb

Antimony
83 208.98

Bi

Bismuth
115 288

Uup

Ununpentium

8 15.999

O

Oxygen
16 32.065

S

Sulphur
34 78.96

Se

Selenium
52 127.6

Te

Tellurium
84 209

Po

Polonium
116 293

Uuh

Ununhexium

9 18.998

F

Flourine
17 35.453

Cl

Chlorine
35 79.904

Br

Bromine
53 126.9

I

Iodine
85 210

At

Astatine
117 292

Uus

Ununseptium

10 20.180

Ne

Neon

2 4.0025

He

Helium

18 39.948

Ar

Argon
36 83.8

Kr

Krypton
54 131.29

Xe

Xenon
86 222

Rn

Radon
118 294

Uuo

Ununoctium

1

2

3

4

5

6

7

1 IA

2 IIA

3 IIIA 4 IVB 5 VB 6 VIB 7 VIIB 8 VIIIB 9 VIIIB 10 VIIIB 11 IB 12 IIB

13 IIIA 14 IVA 15 VA 16 VIA 17 VIIA

18 VIIIA

57 138.91

La

Lanthanum

58 140.12

Ce

Cerium

59 140.91

Pr

Praseodymium

60 144.24

Nd

Neodymium

61 145

Pm

Promethium

62 150.36

Sm

Samarium

63 151.96

Eu

Europium

64 157.25

Gd

Gadolinium

65 158.93

Tb

Terbium

66 162.50

Dy

Dysprosium

67 164.93

Ho

Holmium

68 167.26

Er

Erbium

69 168.93

Tm

Thulium

70 173.04

Yb

Ytterbium

71 174.97

Lu

Lutetium

89 227

Ac

Actinium

90 232.04

Th

Thorium

91 231.04

Pa

Protactinium

92 238.03

U

Uranium

93 237

Np

Neptunium

94 244

Pu

Plutonium

95 243

Am

Americium

96 247

Cm

Curium

97 247

Bk

Berkelium

98 251

Cf

Californium

99 252

Es

Einsteinium

100 257

Fm

Fermium

101 258

Md

Mendelevium

102 259

No

Nobelium

103 262

Lr

Lawrencium

Alkali Metal
Alkaline Earth Metal
Metal
Metalloid
Non-metal
Halogen

Noble Gas
Lanthanide/Actinide

Z mass

Symbol

Name

man-
made

(Mendeleev’s) Periodic Table of Chemical Elements via TikZ
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1
Problems

1. Energetics of diatomic systems An approximate expression for the potential energy of two ions
as a function of their separation is (treating the problem one dimensionally),

V = −
ke2

x
+

b

x9
(1.17)

The first term is the usual Coulomb interaction, while the second term is introduced to account
for the repulsive effect of the two ions at small distances. (a) What is the equilibrium spacing xo?
(b) Find b as a function of the equilibrium spacing xo. (c) For NaCl, with an equilibrium spacing
of ro = 0.236 nm, calculate the frequency of small oscillations about x = xo. Hint: do a Taylor
expansion of the potential energy to make it look like a harmonic oscillator for small x=xo.

The equilibrium spacing will be characterized by the net force between the ions being zero, or
equivalently, the potential energy being zero:

F(ro) = −
dU

dr

∣∣∣∣
r=ro

= 0 =
ke2

r2o
−

9b

r10o
(1.18)

ke2r8o = 9b (1.19)

b =
1

9
ke2r8o (1.20)

Substituting this result back into our potential energy expression, we can find the potential energy
at equilibrium, how much energy is gained by the system of ions condensing into a crystal. First,
the potential energy as a function of spacing:

PE = U(r) = −
ke2

r
+

ke2r8o
9r9

(1.21)

Evaluating at equilibrium, ro=0.279 nm,

U(ro) = −
ke2

ro
+

ke2

9ro
= −

8ke2

9ro
≈ −5.42 eV (1.22)

The frequency of small oscillations can be found by Taylor expanding the potential about equilibrium
for small displacements from equilibrium:

U(r− ro) ≈ U(ro) +U′(ro) (r− ro) +
1

2
U′′(ro) (r− ro)

2 (1.23)

The first term in the expansion is just the potential energy at equilibrium which we found above.
The second term, linear in displacement, must vanish at equilibrium (which is exactly the condition
we enforced to find b, after all). The third term is quadratic in displacement, just as it would be
for a simple harmonic oscillator, U= 1

2k (r− ro)
2. Thus, the coefficient of the quadratic term must

11
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be 1
2k, which means the frequency of small oscillations is ω=

√
k/µ, where µ is the reduced mass

of the system:

µ =
mNamCl

mNa +mCl
≈ 13.95 u = 2.32× 10−26 kg (1.24)

That is, the diatomic molecule looks like two masses coupled by a spring.

1

2
k =

1

2
U′′(ro) (1.25)

k = U′′(ro) = −
2ke2

r3o

90b

r11o
=

8ke2

r3o
≈ 140N/m (1.26)

ω =

√
k

µ
= 2πf (1.27)

The frequency of oscillation f is then

f =
1

2π

√
k

µ
≈ 1.24× 1013 Hz ≈ 414 cm−1 (1.28)

A reliable experimental value is about 365 cm−1, in good agreement with our simple model.iv

2. (a) A diatomic molecule has only one mode of vibration, and we may treat it as a pair of masses
connected by a spring (figure (a) below). Find the vibrational frequency, assuming that the masses
of A and B are different. Call them ma and mb, and let the spring have constant k.

(b) A diatomic molecule adsorbed on a solid surface (figure (b) below) has more possible modes of
vibration. Presuming the two springs and masses to be equivalent this time, find their frequencies.

Figure 1.3: From http: // prb. aps. org/ abstract/ PRB/ v19/ i10/ p5355_ 1 .

Just because we can, we will solve the more general problem of three different springs shown below
(k1, k2, and k3 from left to right) and two different masses m1 and m2. Though it requires a bit
more algebra, it solves both of our problems posed and several others. By setting k1 = k3 = 0 we
solve problem (a), and setting k3 = 0 we solve problem (b). By setting k1 = k2 = k3 we solve the

ivSee http://scitation.aip.org/content/aip/journal/jpcrd/36/2/10.1063/1.2436891.
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simplest case of two coupled oscillators, a problem you will no doubt encounter again. So, for the
purposes of illustration, we will drag this problem out in quite some detail.

Figure 1.4: From http: // en. wikipedia. org/ wiki/ Normal_ mode .

Let mass m1 be displaced from equilibrium by an amount x1 and mass m2 by an amount x2, with
positive x running to the right.v Mass m1 is connected to springs k1 and k2. Spring k1 is compressed
(or elongated) only by mass m1 due to its displacement x1, and it reacts with a force −k1x1 on mass
m1. Similarly, spring 3 is compressed only by mass 2, so it reacts with a force −k3x2 on mass m2.
Spring 2 is connected to both masses m1 and m2, and its net change in length from equilibrium is
the difference between the displacements of masses m1 and m2, x2−x1. If both masses move in the
same direction by the same amount, the net change in length is zero, whereas if both masses move
in opposite directions in the same amount, the net change in length is twice as much. Spring 2 thus
pushes back on both masses m1 and m2 with a force k2(x2−x1).

Putting all this together, we can write the net force on masses m1 and m2, making note of the fact
that for mass m1 the force from k1 is opposite in direction to that of k2, and similarly for the forces
from k3 and k2 on mass m2.

F1 = m1
d2x1

dt2
= −k1x1 + k2 (x2 − x1) (1.29)

F2 = m2
d2x2

dt2
= −k3x2 + k2 (x1 − x2) (1.30)

Now, what are the possible modes of oscillation? First, we seek only steady-state solutions. Since
we have not included any damping, that means ones that involve both masses oscillating freely in a
sinusoidal fashion. The symmetry of the problem dictates that only two modes should be possible: a
symmetric one where both masses move in the same direction, and an antisymmetric one where the
masses move in opposite directions. In the symmetric mode, in the limiting case that k1=k3 and
m1=m2, we would have the masses moving in unison and the central spring k2 would remain at its
equilibrium length (and in this case the frequency should not depend on k2). In the antisymmetric
mode, a higher frequency vibration occurs where the masses move toward and away from each
other. In any case: if we seek steady-state sinusoidal solutions, symmetric or antisymmetric, there
is a single frequency governing each mode, and we may choose

vIt makes no difference which direction we call +x, so long as we are consistent.

PH253: Modern Physics P. LeClair
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x1 = A1e
iωt (1.31)

x2 = A2e
iωt (1.32)

Plugging this trial solution into our equations of motion above,

−m1ω
2A1e

iωt = −k1A1e
iωt + k2 (A2 −A1) e

iωt (1.33)

−m2ω
2A2e

iωt = −k3A2e
iωt + k2 (A1 −A2) e

iωt (1.34)

Simplifying, and canceling the common factor of eiωt

−m1ω
2A1 = −k1A1 + k2 (A2 −A1) (1.35)

−m2ω
2A2 = −k3A2 + k2 (A1 −A2) (1.36)

We may write this as a system of two equations in terms of the two unknown amplitudes A1 and
A2:

(
m1ω

2 − k1 − k2
)
A1 + k2A2 = 0k2A1 +

(
m2ω

2 − k3 − k2
)
A2 = 0 (1.37)

Of course, we do not really wish to find the amplitudes, we wish to find ω. We may find ω by
investigating the conditions under which a solution to the above equations exists. First, we write
the equation above in matrix form:

[(
m1ω

2 − k1 − k2
)

k2

k2
(
m2ω

2 − k3 − k2
)] [A1

A2

]
=

[
0

0

]
(1.38)

This system of equations has a solution only if the matrix of coefficients has a determinant of zero:

∣∣∣∣∣
(
m1ω

2 − k1 − k2
)

k2

k2
(
m2ω

2 − k3 − k2
)∣∣∣∣∣ = 0 =

(
m1ω

2 − k1 − k2
) (

m2ω
2 − k3 − k2

)
− k22 (1.39)

Expanding,

m1m2ω
4 − [(k2 + k3)m1 + (k1 + k2)m2]ω

2 + (k1 + k2) (k2 + k3) − k22 = 0 (1.40)

This is a quadratic in ω2, which we can readily solve:

P. LeClair PH253: Modern Physics
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ω2 =
(k2 + k3)m1 + (k1 + k2)m2 ±

√
((k2 + k3)m1 + (k1 + k2)m2)

2 − 4m1m2

[
(k1 + k2) (k2 + k3) − k22

]
2m1m2

ω2 =
(k2 + k3)m1 + (k1 + k2)m2 ±

√
((k2 + k3)m1 − (k1 + k2)m2)

2 + 4m1m2k
2
2

2m1m2
(1.41)

It doesn’t simplify a lot more than this in the general case. Let us examine then the cases of interest.

FIrst, it instructive to keep the more general setup with three springs but consider the special case
of identical masses and springs by letting k1=k2=k3≡k and m1=m2≡m. Our expression above
then simplifies to

ω2 =
4km± 2km

2m2
=

{
3k

m
,
k

m

}
(1.42)

Physically, this makes sense. We have the symmetric mode (ω=
√

k/m) in which the two masses
move in unison back and forth and the central spring remains uncompressed at all times. The
second is an antisymmetric mode which has the two masses moving out of phase, both moving
outward at the same time or both moving inward at the same time. The exterior springs are being
compressed by each mass during half a cycle of oscillation, and during the other half the central
spring is compressed by both masses (so twice as much), almost as if three springs are acting on
each mass. This leads to the higher frequency of the antisymmetric ω=

√
3k/m mode.

(b) For the diatomic molecule, we set k1=k3= 0 and k2≡k in the general solution, leading to

ω2 =
km1 + km2 ±

√
(km1 − km2)

2 + 4m1m2k2

2m1m2
=

k (m1 +m2)± k (m1 +m2)

2m1m2
(1.43)

ω2 =
k (m1 +m2)

m1m2
=

k

µ
(1.44)

Here µ=m1m2/(m1 +m2) is the reduced mass of the system. The diatomic molecule has only one
mode of vibration, the antisymmetric one, which is the same as that of a mass µ connected to a
fixed point by a spring k. The symmetric mode in this case would correspond to a translation of the
whole molecule, since it isn’t anchored to anything. If the molecule is symmetric, m1=m2, we have
ω2=2k/m – since the only mode is the one in which both atoms compress the spring together, we
would expect the frequency to be twice as high as that of a single mass connected by a spring to a
fixed point.

(c) For the symmetric diatomic molecule on a surface, we set k3=0 and m1=m2≡m in the general
solution:

PH253: Modern Physics P. LeClair
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ω2 =
(k1 + 2k2)m±

√
(k2m− (k1 + k2)m)2 + 4m2k22

2m2
=

(k1 + 2k2)±
√

(k2 − (k1 + k2))
2 + 4k22

2m

ω2 =
k1 + 2k2 ±

√
4k22 + k21

2m
(1.45)

If the springs are equal – not very realistic for a molecule adsorbed on a surface – this simplifies to

ω2 =

(
3±

√
5
)

2

k

m
(1.46)

While our free diatomic molecule has only a single mode of vibration, after bonding to the surface
the system again has two vibrational modes, corresponding to symmetric and antisymmetric vibra-
tions of the two masses.

Under the more realistic assumption that the “spring” coupling the molecule to the surface is much
weaker than the interatomic bond, k1≪k2,

ω2 =
k1 + 2k2 ±

√
4k22 + k21

2m
=

k1 + 2k2 ± 2k2

√
1+

k2
1

4k2
2

2m
≈

k1 + 2k2 ± 2k2

(
1+

k2
1

8k2
2

)
2m

(1.47)

ω2 ≈

k1 −
k2
1

4k2

2m
,
k1 + 4k2 +

k2
1

4k2

2m

 ≈
{

k1

2m
,
2k2
m

+
k1

2m

}
(1.48)

If we write the isolated diatomic molecule’s vibrational frequency as ωo=
√

2k2/m,

ω2 =

{
k1

2m
,
2k2
m

+
k1

2m

}
= {δω,ωo + δω} (1.49)

Thus, for weak coupling to the surface, the fundamental mode is shifted upward by an amount
δω=

√
k1/2m, and a new low-frequency mode is introduced at δω. Spectroscopically, one can use

this upward shift of the fundamental mode to detect the absorption of molecules on a surface and
estimate the adsorption energy.

3. Two positive and two negative charges are arranged on a square lattice of side a in two different
ways, shown below. Calculate the electrostatic potential energy of each configuration. Which
configuration of charges is more stable? Why?

This is problem is straight from intro physics. Using the principle of superposition, we know that
the potential energy of a system of charges is just the sum of the potential energies for all the unique
pairs of charges. The problem is then reduced to figuring out how many different possible pairings
of charges there are, and what the energy of each pairing is. The potential energy for a single pair

P. LeClair PH253: Modern Physics
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+q

-q

+q

-q

+q

-q

-q

+q

(a) (b)

a
a

a
a a

a

a
a

of charges, both of magnitude q, separated by a distance d is just:

PEpair =
keq

2

a

We need figure out how many pairs there are, and for each pair, how far apart the charges are.
Once we’ve done that, we need to figure out the two different arrangements of charges and run the
numbers.

In this case, there are not many possibilities. Label the upper left charge in each diagram “1” and
number the rest clockwise. The possible pairings are then only

q1q2,q1q3,q1q4

q2q3,q2q4

q3q4

Since there are the same number of possibilities for either crystal, the total potential energy in
either case is just adding all of these pairs’ contributions together. Except for pairs q2q4 and q1q3,
which are separated by a distance a

√
2, all others are separated by a distance a. Thus,

PE =
keq1q2

a
+

keq1q3

a
√
2

+
keq1q4

a
+

keq2q3

a
+

keq2q4

a
√
2

+
keq3q4

a
(1.50)

First, consider configuration (a). All we need to do now is plug in +q for q1 and q2, and −q for
q3 and q4:

PEa =
keq

2

a
+

ke
(
−q2

)
a
√
2

+
ke
(
−q2

)
a

+
ke
(
−q2

)
a

+
ke
(
−q2

)
a
√
2

+
keq

2

a
(1.51)

=
keq

2

a

(
−

2√
2

)
= −

√
2
keq

2

a
≈ −1.414

keq
2

a
(1.52)

For configuration (b), we need +q for q1 and q3, and −q for q2 and q4:
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PE =
ke
(
−q2

)
a

+
keq

2

a
√
2
+

ke
(
−q2

)
a

+
ke
(
−q2

)
a

+
keq

2

a
√
2
+

ke
(
−q2

)
a

(1.53)

=
keq

2

a

(
−4+

2√
2

)
=

keq
2

a

(
−4+

√
2
)
≈ −2.586

keq
2

a
(1.54)

Configuration (b) has a lower potential energy, and is therefore more stable. Qualitatively, this
makes sense: configuration (b) keeps the like charges as far away as possible, which also maximizes
the number of favorable opposite pairings at close distance.

4. Energetics of diatomic systems II. An approximate expression for the potential energy of two
ions as a function of their separation is

U(r) = −
ke2

r
+

b

r9
(1.55)

The first term is the usual Coulomb interaction, while the second term is introduced to account for
the repulsive effect of the two ions at small distances. (a) Find b as a function of the equilibrium
spacing ro. (b) Calculate the potential energy of KCl at its equilibrium spacing (ro=0.279 nm).

The equilibrium spacing will be characterized by the net force between the ions being zero, or
equivalently, the potential energy being zero:

F(ro) = −
dU

dr

∣∣∣∣
r=ro

= 0 =
ke2

r2o
−

9b

r10o
(1.56)

ke2r8o = 9b (1.57)

b =
1

9
ke2r8o (1.58)

Substituting this result back into our potential energy expression,

PE = U(r) = −
ke2

r
+

ke2r8o
9r9

(1.59)

Evaluating at equilibrium,

U(ro) = −
ke2

ro
+

ke2

9ro
= −

8ke2

9ro
≈ −4.59 eV (1.60)

5. Energetics of diatomic systems III. An expression for the potential energy of two neutral atoms
as a function of their separation r is given by the Morse potential,

PE = U(r) = Po

[
1− e−a(r−ro)

]2
(1.61)

(a) Show that ro is the atomic spacing and Po the dissociation energy. (b) Calculate the force
constant for small oscillations about r=ro.
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As in the previous problem, equilibrium is characterized by dU/dr=0.

dU

dr
= 2Po

[
1− e−a(r−ro)

] (
ae−a(r−ro)

)
= 0 (1.62)

Either of the terms in brackets could be zero. The latter only leads to the trivial solution of r→∞,
meaning there is no molecule in the first place. Setting the former term in brackets to zero,

0 = 1− e−a(r−ro) =⇒ r = ro (1.63)

The dissociation energy is defined as the amount of energy required to take the system from equi-
librium at r=ro to complete breakup for r→∞. Thus,

(dissociation energy) =
[
lim
r→∞U(r)

]
−U(ro) = Po − 0 = Po (1.64)

In other words, an amount of work Po is required to bring about an infinite separation of the atoms,
and this defines the dissociation energy.

If we wish to calculate a force constant, it is necessary to show that the force at least approximately
obeys Hooke’s law for small displacements, i.e., for a small displacement δ from equilibrium, δ=
r−ro, F(ro + δ)≈kδ where k is the force constant.vi We have already calculated the force versus
displacement:

F(r) = −
dU

dr
= −2Po

[
1− e−a(r−ro)

] (
ae−a(r−ro)

)
= −2Poa

(
e−a(r−ro) − e−2a(r−ro)

)
F(ro + δ) = −2Poa

(
e−aδ − e−2aδ

)
(1.65)

For small δ, we may make use of the approximation eδ≈ 1 + δ + 1
2δ

2 + · · · . Retaining terms only
up to first order,

F(ro + δ) ≈ −2Poa (1− aδ− 1+ 2aδ) = −
(
2Poa

2
)
δ =⇒ k = 2Poa

2 (1.66)

Thus, for small displacements from equilibrium, we may treat the molecule as a mass-spring system,
with an effective force constant k.

6. Energetics of diatomic systems IV. In the potassium iodide molecule, presume that the K and
I atoms bond ionically by the transfer of one electron from K to I. (a) The ionization energy of K
is 4.34 eV, and the electron affinity of I is 3.06 eV. What energy is needed to transfer an electron
from K to I, to form K+ and I− ions from neutral atoms? This is sometimes called the activation
energy Ea. (b) Another model potential energy function for the KI molecule is the Lennard-Jones

viEquivalently, we could show U(δ)≈ 1
2
kδ2.
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potential:

U(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
+ Ea (1.67)

where r is the internuclear separation distance, and σ and ϵ are adjustable parameters. The Ea term
is added to ensure correct asymptotic behavior at large r. At the equilibrium separation distance
r = ro = 0.305 nm, U(r) is a minimum, and U(ro) = −3.37 eV is the negative of the dissociation
energy. Evaluate σ and ϵ. (c) Calculate the force needed to break up a KI molecule. (d) Calculate
the force constant for small oscillations about r = ro. Hint: Set r = ro + δ, where δ/ro ≪ 1 and
expand U(r) in powers of δ/ro up to second-order terms.

In order to transfer an electron, we must add the ionization energy of K to remove its electron,
but we will gain back the electron affinity of I once it has an extra electron. Thus, the net energy
required is

(ionization energy K) − (electron affinity I) = 4.34 eV − 3.06 eV = 1.28 eV (1.68)

Put another way, the following two reactions must occur and balance:

K + 4.34 eV −→ K+ + e−

I + e− −→ I− + 3.06 eV

K + I + 1.28 eV −→ K+ + I−

Thus, an activation energy of 1.28 eV is required.

We can find σ by enforcing the condition dU
dr

∣∣
r=ro

=0:

dU

dr

∣∣∣∣r = ro = 4ϵ

[
12σ12

r13o
−

6σ6

r7o

]
= 0 (1.69)

12σ12

r13o
=

6σ6

r7o
(1.70)

2σ6 = r6o (1.71)

σ = 2−1/6ro ≈ 0.272 nm (1.72)

Knowing σ, we can find ϵ by evaluating U(ro), since we are given U(ro)=−Ediss=−3.37 eV.

U(ro) = 4ϵ

[(
2−1/6

)12
−
(
2−1/6

)6]
+ Ea = −ϵ+ Ea = −Ediss (1.73)

=⇒ ϵ = −(Ediss + Ea) ≈ 4.65 eV (1.74)

In order to find the force required to break up the molecule, we should first calculate the maximum
restoring force that the molecule is able to respond with. If we exceed that force, the molecule will
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be broken.

F = −
dU

dr
= 4ϵ

[
12σ12

r13
−

6σ6

r7

]
(1.75)

This function has a clear maximum, which we can find by setting dF/dr=0:

dF

dr
= 4ϵ

[
−156σ12

r14
+

42σ6

r8

]
=

4ϵ

σ2

[
−156

(σ
r

)14
+ 42

(σ
r

)8]
= 0

=⇒ r =

(
156

42

)1/6

σ ≈ 0.338 nm (1.76)

Applying the second derivative test, or quick graph, will verify that this is a maximum. Thus,

Fmax = F

((
156

42

)1/6

σ

)
= 4ϵ

[
12

(
42

156

)13/6

−

(
42

156

)7/6]
≈ 6.55 nN (1.77)

Thus, the molecule can apply a maximum restoring force of about 6.55 nN, so exceeding this force
will break up the molecule.

In order to find the force constant for small oscillations, we must either show that F(ro + δ)≈−kδ

or U(ro+δ)≈ 1
2kδ

2 for small displacements δ from equilibrium. The basic tactic is always the same:
if the displacement is small compared to the equilibrium distance, δ/ro≪ 1, then we should write
the potential or force in such a way to use an expansion in δ/ro.

Starting from the potential:

U(ro + δ) = 4ϵ

[(
σ

ro + δ

)12

−

(
σ

ro + δ

)6]
+ Ea = 4ϵ

[(
2−1/6ro

ro + δ

)12

−

(
2−1/6ro

ro + δ

)6]
+ Ea

= 4ϵ

[
1

4

(
ro

ro + δ

)12

−
1

2

(
ro

ro + δ

)6]
+ Ea

= 4ϵ

1
4

(
1

1+ δ
ro

)12

−
1

2

(
1

1+ δ
ro

)6
+ Ea (1.78)

Since δ/ro ≪ 1, we may use the binomial expansion to simplify, viz., (1 + δ/ro)
n ≈ 1 + nδ/ro +

1
2n(n− 1)δ2/r2o, keeping terms up to 2nd order.
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U(ro + δ) = 4ϵ

1
4

(
1

1+ δ
ro

)12

−
1

2

(
1

1+ δ
ro

)6
+ Ea

≈ 4ϵ

[
1

4

(
1− 12

δ

ro
+

12 · 11
2

δ2

r2o

)
−

1

2

(
1− 6

δ

ro
+

6 · 5
2

δ2

r2o

)]
+ Ea

≈ ϵ

[
−1+ 36

δ2

r2o

]
+ Ea = (Ea − ϵ) +

1

2

(
72ϵ

r2o

)
δ2 = U(ro) +

1

2

(
72ϵ

r2o

)
δ2 (1.79)

Thus, k= 72ϵ/r2o≈ 3600 eV/nm≈ 576N/m. One can just as easily start with the force expression
to arrive at the same result, except that now we need only keep terms to first order in the binomial
expansion:

F(ro + δ) = 4ϵ

[
12σ12

(ro + δ)13
−

6σ6

(ro + δ)7

]
= 4ϵ

[
12

1
4r

12
o

(ro + δ)13
− 6

1
2r

6
o

(ro + δ)7

]
= 4ϵ

[
3

ro

(
1+

δ

ro

)−13

−
3

ro

(
1+

δ

ro

)−7]
≈ 4ϵ

[
3

ro

(
1− 13

δ

ro

)
−

3

ro

(
1− 7

δ

ro

)]
= −

(
72ϵ

r2o

)
δ (1.80)

Again, the conclusion is k=72ϵ/r2o.

7. Crystal lattice energy. Consider a one-dimensional chain of alternating positive and negative
ions. Show that the potential energy associated with one of the ions and its interactions with the
rest of this hypothetical crystal is

U(r) = −keα
e2

r
(1.81)

where the Madelung constant is α=2 ln 2 and r is the interionic spacing. Hint: the series expansion
for ln (1+ x) may prove useful in evaluating an infinite sum.

Pick any positive ion +e as the origin. Immediately to the right at a distance r, we have a negative
ion −e. The potential energy of this pair is −ke2/r. One more lattice spacing to the right, a
distance 2r from the origin, is another negative ion, whose potential energy with the ion at the
origin is ke2/2r. Continuing in this way, all ions to the right-hand side of the ion at the origin give
us a potential energy

URHS = −
ke2

r
+

ke2

2r
−

ke2

3r
+ . . . =

ke2

r

∞∑
n=1

(−1)n

n
= −

ke2

r

∞∑
n=1

(−1)n+1

n
(1.82)

To the left-hand side of the origin, there are just as many ions in the same arrangement, giving us
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the same contribution to the potential energy. Thus,

Utot = 2URHS = −2
ke2

r

∞∑
n=1

(−1)n+1

n
(1.83)

The series we must evaluate is then

∞∑
n=1

(−1)n+1

n
(1.84)

This is known as the alternating harmonic series, and is known to evaluate to ln 2. This can be
seen readily from the Taylor expansion for ln (1+ x):

ln (1+ x) =

∞∑
n=1

(−1)n+1

n
xn =⇒ ln (2) =

∞∑
n=1

(−1)n+1

n
(1.85)

Thus, the potential energy is

Utot = 2URHS = −2
ke2

r

∞∑
n=1

(−1)n+1

n
= −keα

e2

r
with α = 2 ln 2 (1.86)

8. A phenomenological expression for the potential energy of a bond as a function of spacing is
given by

U(r) =
A

rn
−

B

rm
(1.87)

For a stable bond, m<n. Show that the molecule will break up when the atoms are pulled apart
to a distance

rb =

(
n+ 1

m+ 1

)1/(n−m)

ro (1.88)

where ro is the equilibrium spacing between the atoms. Be sure to note your criteria for breaking
used to derive the above result.

The potential U(r) has an associated force, the molecule’s restoring force:

F(r) = −
dU

dr
(1.89)

The molecule will break when its maximum restoring force is reached, when dF/dr=−d2U/dr2=0.
Equilibrium is when F=−dU/dr=0. At the equilibrium spacing ro, the force is zero, or equivalently,
the potential is at a minimum.
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F(ro) = −
dU

dr

∣∣∣∣
ro

=
nA

rn+1
o

−
mB

rm+1
o

= 0 (1.90)

nA

mB
=

rn+1
o

rm+1
o

= rn−m
o (1.91)

ro =

(
nA

mB

) 1
n−m

(1.92)

Is this really a minimum for U? We can check with the second derivative test: if d2U/dr2 =

−dF/dr>0 at ro, have a maximum. We will need dF/dr shortly anyway. You didn’t really need to
do this on your homework, but it is instructive:

−
dF

dr
=

d2U

dr2
=

n (n+ 1)A

rn+2
−

m (m+ 1)B

rm+2
(1.93)

d2U

dr2

∣∣∣∣
ro

= n (n+ 1)A

(
mB

nA

) n+2
n−m

−m (m+ 1)B

(
mB

nA

)m+2
n−m

(1.94)

=

(
mB

nA

)2 [
n (n+ 1)A

(
mB

nA

) n
n−m

−m (m+ 1)B

(
mB

nA

) m
n−m

]
(1.95)

=

(
mB

nA

)2(
mB

nA

) n
n−m

[
n (n+ 1)A−m (m+ 1)B

(
mB

nA

)m−n
n−m

]
(1.96)

=

(
mB

nA

)2(
mB

nA

) n
n−m

[
n (n+ 1)A−m (m+ 1)B

(
nA

mB

)]
(1.97)

=

(
mB

nA

) n+2
n−m

[
n (n+ 1)A− n (m+ 1)A

]
(1.98)

= nA

(
mB

nA

) n+2
n−m

[
n−m

]
> 0 (1.99)

Clearly, the only way this expression will be positive is if n>m, which means stable bonds have
n > m as the problem states. This means that the repulsive force has a higher index than the
attractive force, and it is of shorter range.

What about breaking the molecule? For distances smaller than ro, the force is repulsive, while for
distances greater than ro it is attractive – in either case, it serves to try and restore the equilibrium
position. However, the competition between the shorter-range repulsive force and longer-range at-
tractive force means that there is a critical distortion of the molecule for r>ro at which the force
is maximum, and any stronger force (or larger displacement) will separate the constituents to an
arbitrarily large distance – the molecule will be broken.
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We have the force between the molecular constituents above:

F(r) =
nA

rn+1
−

mB

rm+1
(1.100)

so we can readily calculate the maximum force with which the bond may try to restore its equilib-
rium. The force above is the force with which the molecule will respond if we push or pull on it.
The maximum force will occur when dF/dr=0, at a radius rb

dF

dr

∣∣∣∣
rb

=
n(n+ 1)A

rn+2
b

−
m(m+ 1)B

rm+2
b

= 0 (1.101)

n(n+ 1)A

m(m+ 1)B
=

rn+2
b

rm+2
b

= rn−m
b (1.102)

rb =

(
n(n+ 1)

m(m+ 1)B

) 1
n−m

=

(
nA

mB

) 1
n−m

(
n+ 1

m+ 1

) 1
n−m

(1.103)

Now, how do we know this is the maximum force, and not a minimum force? We grind through
another derivative . . . we must have d2F/dr2>0 for a maximum:

d2F

dr2
=

n (n+ 1) (n+ 2)A

rn+3
−

m (m+ 1) (m+ 2)B

rm+3
= rn+3

[
n (n+ 1) (n+ 2)A−

m (m+ 1) (m+ 2)B

rm−n

]
d2F

dr2

∣∣∣∣
rb

= rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (m+ 1) (m+ 2)Brn−m

o

(
n+ 1

m+ 1

)n−m
n−m

]

= rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (n+ 1) (m+ 2)Brn−m

o

]
(1.104)

= rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A−m (n+ 1) (m+ 2)B

(
nA

mB

)]
(1.105)

= rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n (n+ 1) (n+ 2)A− n (n+ 1) (m+ 2)A

]
(1.106)

= An (n+ 1) rn+3
o

(
n+ 1

m+ 1

) n+3
n−m

[
n−m

]
> 0 (1.107)

For the second to last line, we noted that rn−m
o = nA/mB. Once again, if n > m, the second

derivative is positive, and thus the force is maximum at rb. Applying a force sufficiently strong to
stretch the bond to a separation rb will serve to break it. Incidentally, the maximum force required
is
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F(rb) =
nA

rn+1
o

(
n+ 1

m+ 1

) n+1
m−n

−
mB

rm+1
o

(
n+ 1

m+ 1

)m+1
m−n

=

(
n+ 1

m+ 1

) n+1
m−n

[
nA

rn+1
o

−
mB

rm+1
o

(
n+ 1

m+ 1

)]
=

(
n+ 1

m+ 1

) n+1
m−n

[
nA

(
nA

mB

) n+1
m−n

−mB

(
nA

mB

)m+1
m−n

(
n+ 1

m+ 1

)]
(1.108)

=

(
n+ 1

m+ 1

) n+1
m−n

(
nA

mB

) n+1
m−n

[
nA− nA

(
n+ 1

m+ 1

)]
(1.109)

= nA

(
n+ 1

m+ 1

) n+1
m−n

(
nA

mB

) n+1
m−n

(
m− n

m+ 1

)
=

nA

rn+1
b

(
m− n

m+ 1

)
(1.110)
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