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Chapter 1

Compton Scattering

These notes are meant to be a supplement to your textbook, providing alternative and additional
derivations of the most important Compton scattering equations. They are probably most effective
after having read the relevant sections of your textbook.

1.1 Basics

Einstein, in his explanation of the photoelectric effect, modeled light as tiny massless bundles of
energy – photons – which carry discrete amounts of energy based on their frequency, E=hf=hc/λ.
Ignoring for the moment how we reconcile this model with wave-like behavior of light (such as
diffraction or interference), from relativity we also know that the photon must have an energy

E =
√
m2c4 + p2c2 = pc (1.1)

In spite of the fact that photons have no mass, owing to the joint energy-momentum conservation
in relativity, they must carry momentum.i We have the result that a photon of energy E must carry
a momentum p=E/c=hf/c=h/λ.

1.2 Derivation of the Compton equation

Now, if photons are tiny particle-like bundles of energy carrying momentum, we should be able to
demonstrate this fact experimentally. The most straightforward manner to demonstrate this is to
scatter the photons off of another particle, such as a stationary electron. If the photon is scattered
in the same fashion as a particle, a specific angular dispersion of scattering should result, and the
scattered photon should lose some of its energy to the electron. The latter is particularly easy
to observe in principle: if the scattered photon has a lower energy, it has a lower frequency and
longer wavelength. Our classical model of radiation as electromagnetic waves would predict that

iThat light carries momentum is also derivable from classical electromagnetic waves, but since electromagnetism
is a relativistically-consistent theory this is not so surprising.
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2 1.2 Derivation of the Compton equation

incident and scattered photons have essentially the same frequency except for very intense incident
radiation. It was the observation of Compton scattering that convinced many physicists of the
reality of the discrete photon model of light.

The basic idea is illustrated in Fig. 1.1 below. An incident photon of frequency fi, energy Ei=hfi,
and momentum pi =h/λi strikes an electron (mass m) at rest. The photon is scattered through
an angle θ, and the scattered photon has frequency ff, energy Ef=hff, and momentum pf=h/λf.
As a result of the collision, the electron recoils at angle ϕ relative to the incident photon direction,
and acquires kinetic energy KEe and momentum pe.

θ

ϕ
e−

incident photon

scattered photon

recoiling electron
e−

target
electron
at rest

Figure 1.1: Schematic illustration of a photon Compton scattering off of a stationary electron.

If the photon behaves in a particle-like fashion, we can analyze this scattering process as we would
any other collision: conserve energy and momentum. Conservation of energy is more straightfor-
ward. Before the collision, we have the incident photon’s energy, while after the collision we have
the scattered photon’s energy and the electron’s kinetic energy:

hfi = hff + KEe = hff +
√
m2c4 + p2

ec
2 −mc2 (1.2)

Here we have used the fact that the electron’s kinetic total energy is its total energy minus its
rest energy mc2. Conservation of momentum along the horizontal and vertical directions gives,
respectively,

pi = pe cosϕ+ pf cos θ (1.3)

pe sinϕ = pf sin θ (1.4)

In principle, the problem is now solved by suitable rearrangement of these three equations. This
task is made simpler by defining dimensionless energy parameters for the incident and scattered
photons and the electron, recognizing that the naturally relevant energy scale for the problem is
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1.2 Derivation of the Compton equation 3

the electron’s rest energy mc2:

αi =
incident photon energy
electron rest energy =

hfi
mc2 (1.5)

αf =
scattered photon energy
electron rest energy =

hff
mc2 (1.6)

ε =
electron kinetic energy
electron rest energy =

Ee

mc2 (1.7)

All three quantities are dimensionless (no units) and represent the energy of each object as a fraction
of the electron’s rest mass. These substitutions change our energy and momentum equations to:

αi = αf +

√
p2
e

m2c2 + 1 − 1 (1.8)

αi = αf cos θ+
( pe
mc

)
cosϕ (1.9)

αf sin θ =
( pe
mc

)
sinϕ (1.10)

Our experiment measures the incident and scattered photons’ energy and the photon scattering
angle, so the object is now to eliminate the electron’s momentum pe and scattering angle ϕ in
favor of these quantities. We can rearrange the energy equation, square it, and solve for pe:

αi − αf + 1 =

√
p2
e

m2c2 + 1 (1.11)

p2
e

m2c2 = (αi − αf + 1)2 − 1 (1.12)

p2
e = m

2c2 (α2
i − 2αiαf + α2

f + 2αi − 2αf
)

(1.13)

p2
e = m

2c2
(
(αi − αf)

2 + 2 (αi − αf)
)

(1.14)

p2
e = m

2c2
(
α2
i − 2αiαf + α2

f + 2αi − 2αf
)

(1.15)

We can now square and add the two momentum equations to eliminate ϕ
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4 1.2 Derivation of the Compton equation

( pe
mc

)
cosϕ = αi − αf cos θ =⇒ p2

e cos2ϕ = m2c2 (αi − αf cos θ)2 (1.16)( pe
mc

)
sinϕ = αf sin θ =⇒ p2

e sin2ϕ = m2c2α2
f sin2 θ (1.17)

p2
e = m

2c2
(
α2
f sin2 θ+ (αi − αf cos θ)2

)
(1.18)

p2
e = m

2c2 (α2
f sin2 θ+ α2

i − 2αiαf cos θ+ α2
f cos2 θ

)
(1.19)

p2
e = m

2c2 (α2
f + α

2
i − 2αiαf cos θ

)
(1.20)

Comparing this with our previous equation for p2
e, 1.15, we have

α2
i − 2αiαf + α2

f + 2αi − 2αf = α2
f + α

2
i − 2αiαf cos θ (1.21)

−αiαf + αi − αf = −αiαf cos θ (1.22)

αi − αf = αiαf (1 − cos θ) or 1
αf

−
1
αi

= 1 − cos θ (1.23)

(1.24)

The last equation is the famous Compton equation, which we can make more familiar by re-writing
it in terms of the photons’ wavelength. Noting that α=hf/mc2=h/λmc.

1
αf

−
1
αi

= 1 − cos θ (1.25)

λfmc

h
−
λimc

h
= 1 − cos θ (1.26)

λf − λi = ∆λ =
h

mc
(1 − cos θ) (1.27)

(1.28)

This is the more familiar textbook form of the Compton equation.

The quantity h/mc has units of length, and is known as the Compton wavelength λc = h/mc≈
2.42 × 10−12 m. We can see that a head-on collision with the photon scattered backward at 180◦

gives the maximum possible change in wavelength of 2λc. Further, the shift in wavelength ∆λ
between scattered and incident photons is independent of the incident photon energy, a somewhat
surprising result at first.

P. LeClair PH253: Modern Physics



1.3 Electron kinetic energy 5

1.3 Electron kinetic energy

The electron’s kinetic energy must be the difference between the incident and scattered photon
energies:

KEe = hfi − hff = αimc
2 − αfmc

2 = (αi − αf)mc
2 (1.29)

Solving the Compton equation for αf, we have

αf =
αi

1 + αi (1 − cos θ) (1.30)

Combining these two equations,

KEe = (αi − αf)mc
2 = mc2

(
αi −

αi
1 + αi (1 − cos θ)

)
(1.31)

ε =
KEe

mc2 =
α2
i (1 − cos θ)

1 + αi (1 − cos θ) (1.32)

From the latter relationship, it is clear that the electron’s kinetic energy can only be a fraction
of the incident photon’s energy, since the quantity in brackets can be at most approach, but not
reach, unity. This means that there will always be some energy left over for a scattered photon.
Put another way, it means that a stationary, free electron cannot absorb a photon! Scattering must
occur, absorption can only occur if the electron is bound to, e.g., a nucleus which can take away a
bit of the net momentum and energy.

Another important point is that while the Compton shift in wavelength ∆λ is independent of the
incident photon energy Ei=hfi, the Compton shift in photon energy is not. The change in photon
energy is is just the energy acquired by the electron calculated above, which is strongly dependent
on the incident photon energy. Further, it is apparent that the relevant energy scale is set by the
ratio of the incident photon energy to the rest energy of the electron αi. If this ratio is large, the
fractional shift in energy is large, and if this ratio is small, the fractional shift in energy becomes
negligible. Only when the incident photon energy is an appreciable fraction of the electron’s rest
energy is Compton scattering significant. Given mc2≈ 511 keV, relatively hard X-rays or gamma
rays must be used to observe significant Compton scattering. Figure 1.2 shows the fractional energy
as a function of incident photon energy.

What is the maximum electron energy or photon energy shift, given a particular incident photon
energy? One could simply assert the maximum is clearly when cos θ=−1, i.e., θ= π, but this is
unsatisfying and perhaps a touch arrogant. We can set dε/dθ=0 to be sure:
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6 1.3 Electron kinetic energy
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Figure 1.2: Fraction of the incident photon energy retained by the electron as a function of incident photon energy for various
photon scattering angles.

dε

dθ
= α2

i

[
−αi sin θ

(1 + αi (1 − cos θ))2 +
sin θ

1 + αi (1 − cos θ) +
αi sin θ cos θ

(1 + αi (1 − cos θ))2

]
= 0 (1.33)

0 = sin θ [−αi + 1 + αi (1 − cos θ) + αi cos θ] (1.34)

0 = sin θ (1.35)

θ = {0,π} (1.36)

The solution θ=0 can be discarded, since this corresponds to the photon going right through the
electron, an unphysical result. One should also perform the second derivative test to ensure we
have found a maximum, but it is tedious and can be verified by a quick plot of ε(θ). At θ=π, the
maximum energy of the electron thus takes a nicely simple form:

KEmax = hfi

(
2αi

1 + 2αi

)
(1.37)

ε = αi

(
2αi

1 + 2αi

)
=

2α2
i

1 + 2αi
(1.38)

Again, we see that the maximum electron kinetic energy is at most a fraction of the incident photon
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1.4 Other relationships 7

energy, so absorption cannot occur for free electrons.

1.4 Other relationships

What if we want the electron’s recoil angle, but don’t care about the scattered photon energy? No
problem, we can derive plenty of other interesting relationships. Let’s go back to the momentum
equations:

αi − αf cos θ =
( pe
mc

)
cosϕ (1.39)

αf sin θ =
( pe
mc

)
sinϕ (1.40)

Dividing them, we have

tanϕ =
αf sin θ

αi − αf cos θ =
sin θ

αi
αf

− cos θ
(1.41)

We can use the Compton equation to substitute for αi/αf in terms of αi alone:

tanϕ =
sin θ

αi
αf

− cos θ
=

sin θ
1 + αi (1 − cos θ) − cos θ =

sin θ
(1 + αi) − (1 + αi) cos θ (1.42)

tanϕ =
1

1 + αi

sin θ
1 − cos θ (1.43)

With the aid of a rather obscure trigonometric identity, we can simplify this further. Noting

1 − cos θ
sin θ = tan

(
θ

2

)
(1.44)

we have

(1 + αi) tanϕ =
1

tan (θ/2) or 1
tan (θ/2) =

(
1 +

hfi
mec2

)
tanϕ (1.45)

With sufficient interest, one can go on to show two other interesting relationships:

Ee = mc
2
[

2α2
i

1 + 2αi + (1 + αi)
2 tan2ϕ

]
(1.46)

cos θ = 1 −
2

(1 + αi)
2 tan2ϕ+ 1

(1.47)

(1.48)
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8 1.5 Problems

The first relationship is proven in the problems below.

1.5 Problems

Some of these results are already derived above. The problems below develop the some of the same
relationships in a somewhat different way, however.

1. In Compton scattering what is the kinetic energy of the electron scattered at an angle ϕ with
respect to the incident photon?

Solution: One way is simply to use the electron’s energy derived in the notes and the result above.
In principle, that is it: one has the energy in terms of θ, and a way to get θ from ϕ, so the energy
can be determined from a knowledge of αi and ϕ alone. This is acceptable, but inelegant. Finding
a direct relationship between energy, αi, and ϕ would be much nicer.

Start with the electron energy derived in the notes, with ε=Ee/mc2:

ε =
α2
i (1 − cos θ)

1 + αi (1 − cos θ) (1.49)

We may use the trigonometric identity (1 − cos θ)=2 sin2 (θ
2
)
:

ε =
α2
i

(
2 sin2 (θ

2
))

1 + αi
(
2 sin2 (θ

2
)) (1.50)

With one more identity, we can put this in terms of tan
(
θ
2
)
, at which point we can use the result

of Sec. 1.4. The next identity is:

sin2 θ =
tan2 θ

1 + tan2 θ
(1.51)

which yields

ε =

2α2
i

(
tan2 (θ

2
)

1 + tan2 (θ
2
))

1 + 2αi

(
tan2 (θ

2
)

1 + tan2 (θ
2
)) =

2α2
i tan2 (θ

2
)

1 + tan2 (θ
2
)
+ 2αi tan2 (θ

2
) =

2α2
i

1
tan2 (θ

2
) + 1 + 2αi

(1.52)

Section 1.4 gives us

1
tan (θ/2) = (1 + αi) tanϕ (1.53)

Using this identity, we have the electron energy in terms of ϕ and αi alone:
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1.5 Problems 9

ε =
2α2
i

1 + 2αi + (1 + αi)
2 tan2ϕ

(1.54)

or

Ee = mc
2
(

2α2
i

1 + 2αi + (1 + αi)
2 tan2ϕ

)
(1.55)

2. Park 1.2 Show that it is impossible for a photon striking a free electron to be absorbed and not
scattered.

Solution: All we really need to do is conserve energy and momentum for photon absorption by
a stationary, free electron and show that something impossible is implied. Before the collision, we
have a photon of energy hf and momentum h/λ and an electron with rest energy mc2. Afterward,
we have an electron of energy (γ− 1)+mc2 =

√
p2c2 +m2c4 (i.e., the afterward the electron has

acquired kinetic energy, but retains its rest energy) and momentum pe=γmv. Momentum conser-
vation dictates that the absorbed photon’s entire momentum be transferred to the electron, which
means it must continue along the same line that the incident photon traveled. This makes the
problem one dimensional, which is nice.

Enforcing conservation of energy and momentum, we have:

(initial) = (final) (1.56)

hf+mc2 =
√
p2c2 +m2c4 energy conservation variant 1 (1.57)

hf+mc2 = (γ− 1)mc2 energy conservation variant 2 (1.58)
h

λ
= pe = γmv momentum conservation (1.59)

From this point on, we can approach the problem in two ways, using either expression for the
electron’s energy. We’ll do both, just to give you the idea. First, we use conservation of momentum
to put the electron momentum in terms of the photon frequency:

h

λ
= pe =⇒ hc

λ
= hf = pec (1.60)

Now substitute that in the first energy conservation equation to eliminate pe, square both sides,
and collect terms:

(
hf+mc2)2

=
(√

p2c2 +m2c4
)2

=
(√

h2f2 +m2c4
)2

(1.61)

h2f2 + 2hfmc2 +m2c4 = h2f2 +m2c4 (1.62)

2hfmc2 = 0 =⇒ f = 0 =⇒ pe = v = 0 (1.63)

PH253: Modern Physics P. LeClair



10 1.5 Problems

Thus, we conclude that the only way a photon can be absorbed by the stationary electron is if its
frequency is zero, i.e., if there is no photon to begin with! Clearly, this is silly.

We can also use the second variant of the conservation of energy equation along with momentum
conservation to come to an equally ridiculous conclusion:

hf =
hc

λ
= (γ− 1)mc2 energy conservation variant 2 (1.64)

h

λ
= γmv or hc

λ
= γmvc momentum conservation (1.65)

=⇒ γmvc = (γ− 1)mc2 (1.66)

(γ− 1) c = γv (1.67)
γ− 1
γ

=
v

c
=

√
1 −

1
γ2 (definition of γ) (1.68)(

γ− 1
γ

)2
= 1 −

1
γ2 (1.69)

γ2 − 2γ+ 1 = γ2 − 1 (1.70)

γ = 1 =⇒ v = 0 (1.71)

Again, we find an electron recoil velocity of zero, implying zero incident photon frequency, which
means there is no photon in the first place! Conclusion: stationary electrons cannot absorb photons,
but they can Compton scatter them.

3. Ohanian 37.48 Suppose that a photon is “Compton scattered” from a proton instead of an
electron. What is the maximum wavelength shift in this case?

Solution: The only difference from “normal” Compton scattering is that the proton is heavier.
We simply replace the electron mass in the Compton wavelength shift equation with the proton
mass, and note that the maximum shift is at θ=π:

∆λmax =
h

mpc
≈ 2.64× 10−15 m = 2.64 fm (1.72)

Fantastically small. This is roughly the size attributed to a small atomic nucleus, since the Compton
wavelength sets the scale above which the nucleus can be localized in a particle-like sense.

4. The Compton shift in wavelength ∆λ is independent of the incident photon energy Ei = hfi.
However, the Compton shift in energy, ∆E=Ef−Ei is strongly dependent on Ei. Find the expression
for ∆E. Compute the fractional shift in energy for a 10 keV photon and a 10MeV photon, assuming
a scattering angle of 90◦.

Solution: The energy shift is easily found from the Compton formula with the substitution λ=
hc/E:

P. LeClair PH253: Modern Physics



1.5 Problems 11

λf − λi =
hc

Ef
−
hc

Ei
=

h

mc
(1 − cos θ) (1.73)

cEi − cEf
EiEf

=
1 − cos θ
mc

(1.74)

∆E = Ei − Ef =

(
EiEf
mc2

)
(1 − cos θ) (1.75)

∆E

Ei
=

(
Ef
mc2

)
(1 − cos θ) (1.76)

Thus, the fractional energy shift is governed by the photon energy relative to the electron’s rest
mass, as we might expect. In principle, this is enough: one can plug in the numbers given for Ei
and θ, solve for Ef, and then calculate ∆E/Ei as requested. This is, however, inelegant. One should
really solve for the fractional energy change symbolically, being both more elegant and enlightening
in the end. Start from Eq. 1.76 isolate Ef:

Ei − Ef
Ei

= 1 −
Ef
Ei

=
Ef
mc2 (1 − cos θ) (1.77)

1 = Ef

[
1
Ei

+
1
mc2 (1 − cos θ)

]
(1.78)

Ef =
1

1/Ei + (1 − cos θ) /mc2 =
mc2Ei

mc2 + Ei (1 − cos θ) (1.79)

Now plug that back into the expression for ∆E we arrived at earlier, Eq. 1.76:

∆E

Ei
=

(
1
mc2

)(
mc2Ei

mc2 + Ei (1 − cos θ)

)
(1 − cos θ) (1.80)

∆E

Ei
=

Ei (1 − cos θ)
mc2 + Ei (1 − cos θ) =

(
Ei
mc2

)
(1 − cos θ)

1 +

(
Ei
mc2

)
(1 − cos θ)

(1.81)

This is even more clear (hopefully): Compton scattering is strongly energy-dependent, and the
relevant energy scale is set by the ratio of the incident photon energy to the rest energy of the
electron, Ei/mc2. If this ratio is large, the fractional shift in energy is large, and if this ratio is
small, the fractional shift in energy becomes negligible. Only when the incident photon energy is an
appreciable fraction of the electron’s rest energy is Compton scattering significant. The numerical
values required can be found most easily by noting that the electron’s rest energy is mc2=511 keV,
which means we don’t need to convert the photon energy to joules. One should find:

PH253: Modern Physics P. LeClair



12 1.5 Problems

∆E

Ei
≈ 0.02 10 keV incident photon, θ=90◦ (1.82)

∆E

Ei
≈ 0.95 10MeV incident photon, θ=90◦ (1.83)

Consistent with our symbolic solution, for the 10 keV photon the energy shift is negligible, while
for the 10MeV photon it is extremely large. Conversely, this means that the electron acquires a
much more significant kinetic energy after scattering from a 10MeV photon compared to a 10 keV
photon.

5. Show that the relation between the directions of motion of the scattered photon and the recoiling
electron in Compton scattering is

1
tan (θ/2) =

(
1 +

hfi
mec2

)
tanϕ (1.84)

Solution: Let the electron’s recoil angle be ϕ and the scattered (exiting) photon’s angle be θ.
Conservation of momentum gets us started. The initial photon momentum is h/λi, the final
photon momentum is h/λf, and the electron’s momentum we will simply denote pe.

pe sinϕ = pf sin θ (1.85)

pe cosϕ+ pf cos θ = pi (1.86)

We can rearrange the second equation to isolate pe cosϕ:

pe cosϕ = pi − pf cos θ (1.87)

Now we can divide Eq. 1.85 by Eq. 1.87 to come up with an expression for tanϕ:

tanϕ =
pf sin θ

pi − pf cos θ =
sin θ

pi/pf − cos θ (1.88)

We now need a substitution for pi/pf to eliminate pf. For this, we can use the Compton equation,
which we can rearrange to yield λf/λi=pi/pf in terms of λi alone, noting p=h/λ.

λf − λi =
h

mc
(1 − cos θ) (1.89)

λf
λi

=
pi
pf

= 1 +
h

mcλi
(1 − cos θ) = 1 +

hfi
mc2 (1 − cos θ) (1.90)

For the last line, we used the relationship λf=c. Substituting this in Eq. 1.88, we eliminate pi and
pf in favor of fi alone, which we need in our final expression.
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1.5 Problems 13

tanϕ =
sin θ

pi/pf − cos θ =
sin θ

1 +
hfi
mc2 (1 − cos θ) − cos θ

=
sin θ(

1 +
hfi
mc2

)
(1 − cos θ)

(1.91)

With the aid of a rather obscure trigonometric identity, we can obtain the desired result. Specifi-
cally:

1 − cos θ
sin θ = tan

(
θ

2

)
(1.92)

Using this in Eq. 1.91, (
1 +

hfi
mc2

)
tanϕ =

1
tan (θ/2) (1.93)

If we again define a dimensionless energy/momentum αi=
hfi
mc2 =

h
mcλi

= pi
mc the result is somewhat

simpler, as is the Compton equation:

(1 + αi) tanϕ =
1

tan (θ/2) (1.94)

αi
αf

= 1 + αi (1 − cos θ) (Compton) (1.95)

This simplification has utility, as shown in the sections above, partly because it allows us to derive
the electron energy in a more compact fashion, and partly because it makes the natural energy
scale of mc2 apparent.
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