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1
Molecular orbitals

1.1 Linear combination of atomic orbitals

We used the variational method as a way to come up with reasonable guesses as to the wave function
for a system, and then optimize our guesses. By considering the symmetry of the problem and basic
mathematical constraints, we could make our guesses pretty good. Moreover, if we were willing to
sacrifice complexity in favor of a few extra adjustable constants (say, by including more terms in
our wave functions), we could improve our accuracy considerably.

The point of all that was to get to a position of understanding molecules and molecular orbitals.
The idea is the following: if we want to figure out the molecular orbitals for, say, an H2 molecule,
we can’t do it exactly. We can use the variational principle and make a decent guess. How to guess?
Basically the same way we explained the periodic table, and the way we’ve talked qualitatively about
bonding: assume a good guess for the molecule is a linear combination of H atom orbitals. That is,
specifically, if φi are the correct ground-state wave functions for each atom i in the molecule, we
presume a good guess for the wave function of the whole molecule is

ψmolecule =
∑
i

ciφi (1.1)

here the ci are the relative weights for each atomic orbital. In the case of a hydrogen molecule H2,
one might reasonably (and correctly) imagine c1 = |c2|, and we know φi(r) =

1√
πa3

o

e−ri/ao where

ao is the Bohr radius and ri the distance from atom i to the electron position in question. The one
surprising result, spoiler alert, is that c1 = c2 and c1 = −c2 are both solutions: the former is the
favorable bonding situation, the latter is the unfavorable anti-bonding state.

The essential idea is that we are assuming that bonding is a relatively weak perturbation, i.e., the
coupling (energy gain) of the atoms to make a molecule is weak compared to the coupling of the
electrons and protons to form an atom in the first place. That’s not a highly accurate assumption,
frankly. However, more accurate but less transparent schemes reproduce the basic idea. The ad-
vantage of the LCAO approach is that it is simple enough to understand on physical grounds, but
just complicated enough to give reasonable and decent answers.

1.1.1 Homo-nuclear diatomic molecule

The title just means we have a molecule like X2. Imagine it is H2 for the moment. We have two
hydrogen atoms, and their ground state wave functions before bonding are φ1 and φ2. The LCAO
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2 1.1 Linear combination of atomic orbitals

proposal is that the wave function for the resulting H2 molecule is a weighted linear combination of
the ground state wave functions,

ψ = c1φ1 + c2φ2 (1.2)

In the case of H atoms, we know φi(r) = 1√
πa3

o

e−ri/ao as noted above. The variational method

using a trial wave function ψ prescribes that we optimize the functional

E[ψ] =

∫
ψ∗HψdV∫
|ψ|2 dV

(1.3)

That is, the minimum of E[ψ] with respect to the adjustable parameters c1 and c2 is the closest
approximation to the ground state energy of the molecule we can come up with for a given trial
function ψ.i If you use Eq. 1.2 in Eq. 1.3, the general result is

E =
c21H11 + c

2
2H22 + 2c1c2H12

c21 + c
2
2 + 2c1c2S12

(1.4)

where the Hij are the bond integrals defined by

Hij = cicj

∫
φiHφj dV (1.5)

where H is the Hamiltonian operator from the Schrödinger equation. Keep in mind: the bond
integrals in the end are just numbers. They may not be easy to calculate, but that does not concern
us for the moment. The S12 term is the overlap integral

S12 =

∫
φ1φ2 dV (1.6)

Again, the overlap integral is also, given some particular system, just a number. Its value does not
concern us, nor do the values of the Hij, the mere fact that they are constants is all we need to
know for now.

Still, there is a lot to unpack here. First, if we are talking about a homo-nuclear system X2 where
both atoms are the same, then H11 = H22 ≡ H are just the kinetic plus potential energies of the
individual atoms before bonding. Using H 1s orbitals, the calculation is straightforward but fussy.
The result is:

H11 = H22 = Eo +
ke2

R

(
1+

R

ao

)
e−2R/ao (1.7)

where Eo is the ground state energy of the hydrogen atom. Neglecting the constant term Eo, here
is a plot:

iWe can do a much better job in the case of hydrogen by making the decay constant a variable as well, i.e., for the
atomic wave function replace ri/ao by cjri/ao, where cj is another adjustable constant. But that is a lot of added
complexity for no added clarity at this point.
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1.1 Linear combination of atomic orbitals 3
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Without including any interactions, if we just jam everything closer together the energy of the
system increases. Since we are considering a homo-nuclear system, either of the integrals can be
denoted by just H = H11 = H22.

TheH12 = H21 term is the bonding or exchange integral, sometimes also called the resonance integral.
Explicitly,

H12 = 2c1c2

∫
φ1Hφ2 dV (1.8)

This term is called an exchange integral because on one side of the H operator we have an orbital on
a given site, and on the other side we have exchanged sites. In a way, you can think of it as the cost
required to switch orbitals. If you’ve taken chemistry, you can think of it as similar to resonance
structures. Using H 1s orbitals one can evaluate it explicitly for a separation distance R:

H12(R) =
ao

R
S12(R) − e

−R/ao

(
1+

R

ao

)
= e−R/ao

(
ao

R
−

2R

3ao

)
(1.9)

where S12, the overlap integral, is discussed below. The next figure shows a plot of H12(R).
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What is interesting in this case is that when the nuclei get too close together, the exchange integral
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4 1.1 Linear combination of atomic orbitals

is positive, meaning it is an unfavorable contribution to the energy. We already discussed how
this made sense in terms of the proton-proton repulsion and reduced electron screening at small
separations.

Finally, the S12 term, the overlap integral, is just what it sounds like: a measure of the degree to
which the atomic orbitals situated on different atoms. It is the area under the curve φ1 that is also
under φ2. Using H 1s orbitals, one can evaluate it explicitly, and one finds for a separation R of
the nuclei

S12(R) = e
−R/a0

(
1+

R

ao
+
R2

3a2o

)
(1.10)

Here is a plot of S(R):
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Following the variational approach, the idea is to minimize the energy with respect to the adjustable
parameters c1 and c2 we have left ourselves. One should set ∂E/∂ci = 0 in each case, which is
straightforward but tedious. The result is two solutions

Eb =
H−H12

1− S12
(1.11)

Ea =
H+H12

1+ S12
(1.12)

With a bit of algebra, you can rewrite these as

Eb = H−
H12 −HS12
1− S12

(1.13)

Ea = H+
H12 −HS12
1+ S12

(1.14)
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1.1 Linear combination of atomic orbitals 5

This has the form “molecule energy = (atom energy) ± (bonding gain or loss)”, which the picture
we’ve had for a while now. Atoms wouldn’t come together to form molecules unless it was ener-
getically favorable, in the same say electrons and protons wouldn’t come together to form atoms
unless it was energetically favorable. You’ve seen this before too: these are the bonding (Eb) and
anti-bonding (Ea) energy levels you saw in introductory chemistry.

We can also the qualitative behavior in the limit the separation distance tends toward infinity (no
molecule). In that case, the atomic orbitals don’t overlap at all, so any integral involving both sites
will be zero, i.e., H12 = S12 = 0. In that case, the energy reduces to E = H in both cases, each atom
just has its original pre-bonding energy. More importantly, what was originally two degenerate
energy levels - the bare atoms both had the same ground state energy - are now two distinct energy
levels Ea and Eb, with Ea > Eb and the difference is

∆E = Ea − Eb = 2

(
H12 −HS12
1− S212

)
(1.15)

Looking at the form of the energy difference, we can conclude that increasing overlap of the wave
functions is favorable since S > 0 everywhere, and smaller distances are favored since S decreases
monotonically as separation increases. However, we know that H12 is positive below a critical dis-
tance, adding to the overall energy, which tells us the minimum energy is at some finite separation
of the two nuclei.

From two individual atoms, we now have a combination, a molecule, that has a more favorable en-
ergy state where the two atoms bond. We also have an unfavorable configuration, the anti-bonding
state, and so long as more electrons are in the bonding state vs the anti-bonding state, we expect
molecules to form. We’re on our way to molecular orbitals. Schematically, here are two pictures.
First, the energy vs separation.
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Figure 1.1: Schematic energy vs. separation for a diatomic molecule
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6 1.1 Linear combination of atomic orbitals

The bonding state clearly has a minimum energy, corresponding to a favorable bond which has a
lower energy than the individual atoms. The antibonding state is clearly unfavorable for all separa-
tions, and their occupation tend to pull the molecule apart. This is the situation we talked about in
H2 where both electrons stuck to the outside of the molecule - in that case the two protons repelled
each other, and we were better off having two separate atoms. We also can’t have both electrons
between the protons, as the electrons would just repel each other. The happy medium is spreading
the electron density around, meaning a tradeoff between the bonding and overlap integrals hinted
at in Eq. 1.15. This is what the energy levels do:

1s 1s

1σ

φ1 +φ2

1σ∗

φ1 −φ2

atom1 molecule atom2

Figure: Molecular orbitals: σ orbitals from 1s states

The overall ground state energy of the molecule reduces, at the expense of the first excited state.
In general, when two s states overlap, we call the resulting combination a σ molecular orbital. The
∗ superscript indicates the unfavorable anti-bonding case. The lowest states are 1s atomic orbitals
adding or subtracting in equal weight, resulting in 1σ bonding and 1σ∗ antibonding molecular
orbitals. Here is what the molecular wave functions look like for the case of H2:
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Figure 1.2: Bonding molecular wave function
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Figure 1.3: Anti-bonding molecular wave function

Looking at the electron density |ψ|2, one can visualize the constructive and destructive overlap of
the orbitals a bit better. Adding two 1s orbitals in phase creates a σ orbital, adding them out of
phase creates a σ∗ orbital:

Figure 1.4: Two atomic 1s orbitals combine to form bonding and anti-bonding molecular orbitals. Via https: // www.
sparknotes. com/ chemistry/ bonding/ molecularorbital/ section1/

Overall, the competition between bonding and antibonding orbitals is captured by the bond order,
defined as

bond order =
1

2

(
number of e− in bonding orbitals − number of e− in antibonding orbitals

)
(1.16)

The higher the bond order, the stronger the bond. For example, H2 has 2 electrons that both occupy
the 1σ orbital, so the bond order is 1

2(2 − 0) = 1. He+2 has three electrons, one of which must be
in the 1σ∗ orbital, giving a bond order of 1

2(2−1) = 1
2 . Thus He+2 should have a weaker bond thanH2.

One can continue this method for heavier atoms, or higher excited states of H, where the outermost
electron participating in bonding is in a p or d orbital. For example, we can combine 2 pz atomic
orbitals to make 2σ molecular orbitals, and px or py to form π molecular orbitals as shown below.

PH253: Modern Physics P. LeClair
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8 1.1 Linear combination of atomic orbitals

Figure 1.5: Two atomic pz orbitals combine to form bonding and anti-bonding σ molecular orbitals. Via
https: // chem. libretexts. org/ Bookshelves/ General_ Chemistry/ Map% 3A_ Chemistry_ -_ The_ Central_ Science_ ( Brown_ et_ al. )/ 09. _Molecular_ Geometry_ and_
Bonding_ Theories/ 9. 7% 3A_ Molecular_ Orbitals

Figure 1.6: Two atomic px or py orbitals combine to form bonding and anti-bonding π molecular or-
bitals. Via https: // chem. libretexts. org/ Bookshelves/ General_ Chemistry/ Map% 3A_ Chemistry_ -_ The_ Central_ Science_ ( Brown_ et_ al. )/ 09. _Molecular_
Geometry_ and_ Bonding_ Theories/ 9. 7% 3A_ Molecular_ Orbitals

When one does this, one comes up with the following energy level picture. Here ∗ denotes anti-
bonding orbitals, and the 1σ and 1σ∗ orbitals have been omitted.
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A A2 A

Generic diatomic system

2p 2p

3σ

3σ∗

2πx 2πy

2π∗x 2π∗y

For a diatomic system then it is just a matter of counting electrons. For example: oxygen (O)
has an electron configuration of 1s22s22p4, a total of 8 electrons. Diatomic oxygen O2 thus has 16
electrons in total. Based on the atomic orbitals, one might expect that all electron spins would be
paired, meaning O2 should be diamagnetic and thus not respond strongly to a magnetic field. If
we fill up the molecular orbitals, remembering to first fill in as many spin up electrons at a given
energy before pairing electrons, we get the following:

Oa O2 Ob

Dioxygen (|S| = 1)

↑↓↑↑
2p

↑↓ ↑ ↑
2p

↑↓

3σ

3σ∗

↑↓
2πx

↑↓
2πy

↑
2π∗x

↑
2π∗y
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10 1.1 Linear combination of atomic orbitals

The 1σ and 2σ orbitals are not shown for brevity. Diatomic oxygen in fact doesn’t have all electrons
paired, the two 2π∗ orbitals each have one unpaired electron. The unpaired spins mean that diatomic
oxygen is in reality paramagnetic, meaning it is attracted to a permanent magnet.
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